
T
h
e
r
e
 and Back Again: A Tale of

E
x

p
e
c
t
a
t
io

n
s

a
n
d

S
l

opes. A Neurips 2020 Tut o
r
ia

l

b
y

M
a
r
c

D
e
is

e
n
r
o

th and

Heights
MonteCarlo

N
ormalizing F

low

integration

num
erical

Sw
am

ps of

b

A

C

T
h
e
r
e
 and Back Again: A Tale of

E
x

p
e
c
t
a
t
io

n
s

a
n
d

S
l

opes. A Neurips 2020 Tut o
r
ia

l

b
y

M
a
r
c

D
e
is

e
n
r
o

th and

Heights
MonteCarlo

N
ormalizing F

low

integration

num
erical

Sw
am

ps of

U
n
ro

ll
in

g
H
il
ls

 O
f
T
im

e

b

A

C

D

Inference in Time Series
Cheng Soon Ong

Marc Peter Deisenroth

December 2020

Marc Deisenrot
h

an
d

Che
ng

 Soon Ong’s Tut
or

ial at

C
M

Setting

▶ Time-series model

xt+1 = f(xt) + ϵ, x0 ∼ p(x0), ϵ ∼ N
(
0, Q

)

▶ Compute an expected utility of a state trajectory τ := (x0, . . . ,xT)

Eτ [U(τ)]

▶ Reinforcement learning and optimal control
▶ Demand forecasting (logistics)
▶ Weather/climate forecasts

▶ Challenge: Long-term predictions and uncertainty propagation

1

Setting

▶ Time-series model

xt+1 = f(xt) + ϵ, x0 ∼ p(x0), ϵ ∼ N
(
0, Q

)
▶ Compute an expected utility of a state trajectory τ := (x0, . . . ,xT)

Eτ [U(τ)]

▶ Reinforcement learning and optimal control
▶ Demand forecasting (logistics)
▶ Weather/climate forecasts

▶ Challenge: Long-term predictions and uncertainty propagation

1

Setting

▶ Time-series model

xt+1 = f(xt) + ϵ, x0 ∼ p(x0), ϵ ∼ N
(
0, Q

)
▶ Compute an expected utility of a state trajectory τ := (x0, . . . ,xT)

Eτ [U(τ)]

▶ Reinforcement learning and optimal control
▶ Demand forecasting (logistics)
▶ Weather/climate forecasts

▶ Challenge: Long-term predictions and uncertainty propagation

1

Setting

▶ Time-series model

xt+1 = f(xt) + ϵ, x0 ∼ p(x0), ϵ ∼ N
(
0, Q

)
▶ Compute an expected utility of a state trajectory τ := (x0, . . . ,xT)

Eτ [U(τ)]

▶ Reinforcement learning and optimal control
▶ Demand forecasting (logistics)
▶ Weather/climate forecasts

▶ Challenge: Long-term predictions and uncertainty propagation

1

Approaches

▶ Deterministic inference via iterative computation
▶ Iteratively determine marginal distributions p(x1), . . . , p(xT)
▶ Compute expectations Ext [u(xt)] and compute utilities of the form

Eτ [U(τ)] =
T∑
t=0

Ext [u(xt)] =
T∑
t=0

∫
u(xt)p(xt)dxt

▶ Stochastic inference via trajectory sampling
▶ Generate sample trajectories τ (s) = (x

(s)
0 , . . . ,x

(s)
T)

▶ Monte-Carlo integration

Eτ [U(τ)] ≈ 1

S

S∑
s=1

U(τ (s))

2

Approaches

▶ Deterministic inference via iterative computation
▶ Iteratively determine marginal distributions p(x1), . . . , p(xT)
▶ Compute expectations Ext [u(xt)] and compute utilities of the form

Eτ [U(τ)] =
T∑
t=0

Ext [u(xt)] =
T∑
t=0

∫
u(xt)p(xt)dxt

▶ Stochastic inference via trajectory sampling
▶ Generate sample trajectories τ (s) = (x

(s)
0 , . . . ,x

(s)
T)

▶ Monte-Carlo integration

Eτ [U(τ)] ≈ 1

S

S∑
s=1

U(τ (s))

2

Deterministic Approximate Inference

Deterministic approximate inference

▶ Iteratively compute marginals

p(xt+1) =

∫
p(xt+1|xt)p(xt)dxt

=

∫
N
(
f(xt), Q

)
p(xt)dxt

xt+1 = f(xt)+ϵ, ϵ ∼ N
(
0, Q

)

No closed-form solution for
nonlinear f

3

Deterministic approximate inference

▶ Iteratively compute marginals

p(xt+1) =

∫
p(xt+1|xt)p(xt)dxt

=

∫
N
(
f(xt), Q

)
p(xt)dxt

xt+1 = f(xt)+ϵ, ϵ ∼ N
(
0, Q

)
No closed-form solution for
nonlinear f

3

Iterative Gaussian approximation

▶ Common approach: Iterative Gaussian
approximation of marginals:

p(xt) ≈ N
(
µt, Σt

)
−3 −2 −1 0 1 2 3

−1

0

1

2

3

x(1)

x(2
)

t=0
t=1

t=2

t=T

t=5

▶ Linearization

▶ Unscented transformation
▶ Moment matching

Extended Kalman filter
Unscented Kalman filter
Assumed density filter

4

Iterative Gaussian approximation

▶ Common approach: Iterative Gaussian
approximation of marginals:

p(xt) ≈ N
(
µt, Σt

)
−3 −2 −1 0 1 2 3

−1

0

1

2

3

x(1)

x(2
)

t=0
t=1

t=2

t=T

t=5

▶ Linearization

▶ Unscented transformation
▶ Moment matching

Extended Kalman filter

Unscented Kalman filter
Assumed density filter

4

Iterative Gaussian approximation

▶ Common approach: Iterative Gaussian
approximation of marginals:

p(xt) ≈ N
(
µt, Σt

)
−3 −2 −1 0 1 2 3

−1

0

1

2

3

x(1)

x(2
)

t=0
t=1

t=2

t=T

t=5

▶ Linearization
▶ Unscented transformation

▶ Moment matching

Extended Kalman filter
Unscented Kalman filter

Assumed density filter

4

Iterative Gaussian approximation

▶ Common approach: Iterative Gaussian
approximation of marginals:

p(xt) ≈ N
(
µt, Σt

)
−3 −2 −1 0 1 2 3

−1

0

1

2

3

x(1)

x(2
)

t=0
t=1

t=2

t=T

t=5

▶ Linearization
▶ Unscented transformation
▶ Moment matching

Extended Kalman filter
Unscented Kalman filter
Assumed density filter

4

Two approaches

p(xt+1) =

∫
N
(
xt+1

∣∣f(xt),Q
)
p(xt)dxt ≈ N

(
xt+1

∣∣µt+1,Σt+1

)

▶ Approximate f

▶ Approximate p(xt)

Linearization (e.g., Smith et al., 1962)
Unscented transformation (Julier & Uhlmann, 1995)

5

Two approaches

p(xt+1) =

∫
N
(
xt+1

∣∣f(xt),Q
)
p(xt)dxt ≈ N

(
xt+1

∣∣µt+1,Σt+1

)

▶ Approximate f

▶ Approximate p(xt)

Linearization (e.g., Smith et al., 1962)
Unscented transformation (Julier & Uhlmann, 1995)

5

Approach 1: Linearization

Key idea (e.g., Smith et al., 1962; Ohab &
Stubberud, 1965)
1. Locally linearize f around mean µt

2. Compute predictive distribution (Gaussian) for
linearized function in closed form

x

f(
x)

f
flin

p(x)

▶ Linearization: First-order Taylor-series expansion around µt

Gradient (Jacobian) df/dxt of f evaluated at µt
▶ Key insight: Gaussians can be pushed through linear functions in closed form

6

Approach 1: Linearization

Key idea (e.g., Smith et al., 1962; Ohab &
Stubberud, 1965)
1. Locally linearize f around mean µt

2. Compute predictive distribution (Gaussian) for
linearized function in closed form

x

f(
x)

f
flin

p(x)

▶ Linearization: First-order Taylor-series expansion around µt

Gradient (Jacobian) df/dxt of f evaluated at µt
▶ Key insight: Gaussians can be pushed through linear functions in closed form

6

How it works

x

p(
x)

Input distribution

f(
x)

f▶ Compute gradient J t := df/dxt|xt=µt

▶ Linearized model:

f(x) ≈ f(µt) + J t(x− µt)

▶ Approximate predictive distribution is
Gaussian:

p(f(xt)) ≈ N
(
f(µt), J tΣtJ

⊤
t

)
p(xt+1) ≈ N

(
f(µt), J tΣtJ

⊤
t +Q

)

7

How it works

x

p(
x)

Input distribution

f(
x)

f
flin▶ Compute gradient J t := df/dxt|xt=µt

▶ Linearized model:

f(x) ≈ f(µt) + J t(x− µt)

▶ Approximate predictive distribution is
Gaussian:

p(f(xt)) ≈ N
(
f(µt), J tΣtJ

⊤
t

)
p(xt+1) ≈ N

(
f(µt), J tΣtJ

⊤
t +Q

)

7

How it works

x

p(
x)

Input distribution

f(
x)

f
flin

p(f (x))

Ground truth
Linearization▶ Compute gradient J t := df/dxt|xt=µt

▶ Linearized model:

f(x) ≈ f(µt) + J t(x− µt)

▶ Approximate predictive distribution is
Gaussian:

p(f(xt)) ≈ N
(
f(µt), J tΣtJ

⊤
t

)
p(xt+1) ≈ N

(
f(µt), J tΣtJ

⊤
t +Q

)

7

Linearization: Properties

x

p(
x)

Input distribution

f(
x)

f
flin

p(f (x))

Ground truth
Linearization▶ Conceptually straightforward

▶ Requires differentiable f

▶ Tends to underestimate true covariance
matrix Overconfidence

▶ Scales cubically in the dimension of x
▶ Widely used in engineering

(e.g., navigation systems, GPS, Apollo
missions)

8

Approach 2: Unscented transformation

Key idea (Julier & Uhlmann, 1995)
1. Approximate p(xt) using a small set of

deterministically chosen sigma points
2. Map sigma points through f

3. Compute a weighted average of the mean and
covariance of the predictive distribution.

x

f(
x)

f
p(x)

Sigma points
Mapped sigma points

9

How it works

x

p(
x)

Input distribution
Sigma points

f(
x)

f▶ Determine 2D + 1 sigma points
Xt = {µt ± α

(√
Σt

)
i
, i = 1, . . . , D}

▶ Map sigma points through f to get f(Xt)

▶ Compute mean/covariance of predictive
distribution p(f(xt)) as a weighted average

µt+1 ≈
2D+1∑
d=1

wµ
df(X

(d)
t)

Σt+1 ≈
2D+1∑
d=1

wΣ
d (f(X

(d)
t)− µt+1)(f(X

(d)
t)− µt+1)

⊤

10

How it works

x

p(
x)

Input distribution
Sigma points

f(
x)

f▶ Determine 2D + 1 sigma points
Xt = {µt ± α

(√
Σt

)
i
, i = 1, . . . , D}

▶ Map sigma points through f to get f(Xt)

▶ Compute mean/covariance of predictive
distribution p(f(xt)) as a weighted average

µt+1 ≈
2D+1∑
d=1

wµ
df(X

(d)
t)

Σt+1 ≈
2D+1∑
d=1

wΣ
d (f(X

(d)
t)− µt+1)(f(X

(d)
t)− µt+1)

⊤

10

How it works

x

p(
x)

Input distribution
Sigma points

f(
x)

f

p(f (x))

Ground truth
UT approximation▶ Determine 2D + 1 sigma points

Xt = {µt ± α
(√

Σt

)
i
, i = 1, . . . , D}

▶ Map sigma points through f to get f(Xt)

▶ Compute mean/covariance of predictive
distribution p(f(xt)) as a weighted average

µt+1 ≈
2D+1∑
d=1

wµ
df(X

(d)
t)

Σt+1 ≈
2D+1∑
d=1

wΣ
d (f(X

(d)
t)− µt+1)(f(X

(d)
t)− µt+1)

⊤

10

Unscented transformation: Properties

x

p(
x)

Input distribution
Sigma points

f(
x)

f

p(f (x))

Ground truth
UT approximation▶ Not a Monte-Carlo method: Sigma points are

deterministic, not random
▶ No explicit calculation of Jacobians

f can be non-differentiable
▶ Input distribution does not need to be Gaussian
▶ Higher accuracy (covariance) than linearization

(Julier & Uhlmann, 2004)

11

Stochastic Approximate Inference

Stochastic approximate inference

▶ Sample trajectories τ (i) =
(
x
(i)
0 , . . . ,x

(i)
T

)
:

1. Sample initial state: x
(i)
0 ∼ p(x0)

2. For t = 1, . . . , T :

x
(i)
t ∼ p(xt|x(i)

t−1) = N
(
xt

∣∣f(x(i)
t−1),Q

)

▶ No parametric restriction to a specific kind of distribution
▶ Have to store all samples (particles) Potential memory issue
▶ Sequential Monte Carlo (particle filter)

(e.g., Doucet et al., 2000; Thrun et al., 2005;)

12

Stochastic approximate inference

t

f(
x t

)

▶ Sample trajectories τ (i) =
(
x
(i)
0 , . . . ,x

(i)
T

)
:

1. Sample initial state: x
(i)
0 ∼ p(x0)

2. For t = 1, . . . , T :

x
(i)
t ∼ p(xt|x(i)

t−1) = N
(
xt

∣∣f(x(i)
t−1),Q

)
▶ No parametric restriction to a specific kind of distribution
▶ Have to store all samples (particles) Potential memory issue
▶ Sequential Monte Carlo (particle filter)

(e.g., Doucet et al., 2000; Thrun et al., 2005;)

12

Discussion: Long-term predictions

Deterministic Stochastic
Density representation Parametric Particles
Bias Yes No
Time correlation No Yes
Speed Fast (Slow)
Parallelization Easy
Memory consumption Low (High)
Gradients Deterministic Stochastic

−3 −2 −1 0 1 2 3
−1

0

1

2

3

x(1)

x(2
)

t=0
t=1

t=2

t=T

t=5

t

f(
x t

)

13

Inference in Gaussian Process Time Series Models

Setting

▶ Time-series model

xt+1 = f(xt) + ϵ, x0 ∼ p(x0), ϵ ∼ N
(
0, Q

)
, f ∼ GP (µ, k)

▶ Two approaches for long-term predictions:
▶ Deterministic approximate inference of the marginals p(x1), . . . , p(xT)
▶ Stochastic approximate inference by sampling trajectories

τ (i) = (x
(i)
0 , . . . ,x

(i)
T)

14

Setting

▶ Time-series model

xt+1 = f(xt) + ϵ, x0 ∼ p(x0), ϵ ∼ N
(
0, Q

)
, f ∼ GP (µ, k)

▶ Two approaches for long-term predictions:
▶ Deterministic approximate inference of the marginals p(x1), . . . , p(xT)
▶ Stochastic approximate inference by sampling trajectories

τ (i) = (x
(i)
0 , . . . ,x

(i)
T)

14

Deterministic approximate inference

p(xt+1) =

∫
p(xt+1|xt)p(xt)dxt

=

∫ ∫
p(f(xt)|f,xt)p(f)dfp(xt)dxt

Approaches:
▶ Linearization (e.g., Ko & Fox, 2009)
▶ Unscented transformation (e.g., Ko & Fox, 2009)
▶ Moment matching (e.g., Deisenroth et al., 2009)

15

Deterministic approximate inference

p(xt+1) =

∫
p(xt+1|xt)p(xt)dxt

=

∫ ∫
p(f(xt)|f,xt)p(f)dfp(xt)dxt

Approaches:
▶ Linearization (e.g., Ko & Fox, 2009)
▶ Unscented transformation (e.g., Ko & Fox, 2009)
▶ Moment matching (e.g., Deisenroth et al., 2009)

15

Deterministic approximate inference

p(xt+1) =

∫
p(xt+1|xt)p(xt)dxt

=

∫ ∫
p(f(xt)|f,xt)p(f)dfp(xt)dxt

Approaches:
▶ Linearization (e.g., Ko & Fox, 2009)
▶ Unscented transformation (e.g., Ko & Fox, 2009)
▶ Moment matching (e.g., Deisenroth et al., 2009)

15

Long-term predictions

−3 −2 −1 0 1 2 3
−1

0

1

2

3

x(1)

x(2
)

t=0
t=1

t=2

t=T

t=5

▶ Iteratively compute p(x1), . . . , p(xT)

p(xt+1) =

∫∫

p(xt+1|xt)

GP prediction

p(xt)

N (µt,Σt)

df dxt

▶ GP moment matching (Girard et al., 2003; Quiñonero-Candela et al., 2003)
▶ Key ingredient: Computing kernel expectations

16

Long-term predictions

−1 −0.5 0 0.5 1
0

1

 x
t

p
(x

t)

−1 −0.5 0 0.5 1

x
t+

1

▶ Iteratively compute p(x1), . . . , p(xT)

p(xt+1) =

∫∫

p(xt+1|xt)

GP prediction

p(xt)

N (µt,Σt)

df dxt

▶ GP moment matching (Girard et al., 2003; Quiñonero-Candela et al., 2003)
▶ Key ingredient: Computing kernel expectations

16

Long-term predictions

−1 −0.5 0 0.5 1
0

1

 x
t

p
(x

t)

−1 −0.5 0 0.5 1

x
t+

1

0 0.5 1 1.5

x
t+

1

p(x
t+1

)

▶ Iteratively compute p(x1), . . . , p(xT)

p(xt+1) =

∫∫
p(xt+1|xt)

GP prediction

p(xt)

N (µt,Σt)

df dxt

▶ GP moment matching (Girard et al., 2003; Quiñonero-Candela et al., 2003)
▶ Key ingredient: Computing kernel expectations

16

Long-term predictions

−1 −0.5 0 0.5 1
0

1

 x
t

p
(x

t)

−1 −0.5 0 0.5 1

x
t+

1

0 0.5 1 1.5

x
t+

1

p(x
t+1

)

▶ Iteratively compute p(x1), . . . , p(xT)

p(xt+1) =

∫∫
p(xt+1|xt)

GP prediction

p(xt)

N (µt,Σt)

df dxt

▶ GP moment matching (Girard et al., 2003; Quiñonero-Candela et al., 2003)
▶ Key ingredient: Computing kernel expectations

16

Example: Model-based reinforcement learning

▶ Learn dynamics of a physical system
from data Gaussian process

▶ Given the learned system, find policy
parameters θ∗ that minimize an
expected long-term cost

Eτ [U(τ)] =
∑T

t=1
Ext [c(xt)]

▶ GP moment matching for long-term
predictions

▶ Gradient descent to find θ∗

xt+1 = f(xt,ut) + ϵ, f ∼ GP

ut = π(xt;θ)

From Deisenroth & Rasmussen (2011)
https://www.youtube.com/PilcoLearner

17

https://www.youtube.com/PilcoLearner

Example: Model-based reinforcement learning

▶ Learn dynamics of a physical system
from data Gaussian process

▶ Given the learned system, find policy
parameters θ∗ that minimize an
expected long-term cost

Eτ [U(τ)] =
∑T

t=1
Ext [c(xt)]

▶ GP moment matching for long-term
predictions

▶ Gradient descent to find θ∗

xt+1 = f(xt,ut) + ϵ, f ∼ GP

ut = π(xt;θ)

From Deisenroth & Rasmussen (2011)
https://www.youtube.com/PilcoLearner

17

https://www.youtube.com/PilcoLearner

Example: Model-based reinforcement learning

▶ Learn dynamics of a physical system
from data Gaussian process

▶ Given the learned system, find policy
parameters θ∗ that minimize an
expected long-term cost

Eτ [U(τ)] =
∑T

t=1
Ext [c(xt)]

▶ GP moment matching for long-term
predictions

▶ Gradient descent to find θ∗

xt+1 = f(xt,ut) + ϵ, f ∼ GP

ut = π(xt;θ)

From Deisenroth & Rasmussen (2011)
https://www.youtube.com/PilcoLearner

17

https://www.youtube.com/PilcoLearner

Example: Model-based reinforcement learning

▶ Learn dynamics of a physical system
from data Gaussian process

▶ Given the learned system, find policy
parameters θ∗ that minimize an
expected long-term cost

Eτ [U(τ)] =
∑T

t=1
Ext [c(xt)]

▶ GP moment matching for long-term
predictions

▶ Gradient descent to find θ∗

xt+1 = f(xt,ut) + ϵ, f ∼ GP

ut = π(xt;θ)

From Deisenroth & Rasmussen (2011)
https://www.youtube.com/PilcoLearner

17

https://www.youtube.com/PilcoLearner

Wide Applicability

Deisenroth et al. (2011) Englert et al. (2013) Kupcsik et al. (2017)

Bischoff et al. (2013b) McHutchon (2014) Bischoff et al. (2013a)

Application to a wide range of robotic systems
18

Stochastic approximate inference

▶ Generating a function draw: Sampling
from a T -dimensional multivariate
Gaussian
T : Number of query points

▶ Drawing a sample from a GP scales
cubically in T

▶ There are some ways around this in low
dimensions (e.g., Särkkä et al., 2013;
Solin et al., 2018) or by making
structural assumptions (e.g., Pleiss et
al., 2018)

Let’s try something else

Figure: Generated with GPflow (Matthews et
al., 2017)

19

Stochastic approximate inference

▶ Generating a function draw: Sampling
from a T -dimensional multivariate
Gaussian
T : Number of query points

▶ Drawing a sample from a GP scales
cubically in T

▶ There are some ways around this in low
dimensions (e.g., Särkkä et al., 2013;
Solin et al., 2018) or by making
structural assumptions (e.g., Pleiss et
al., 2018)

Let’s try something else

0.0 0.2 0.4 0.6 0.8 1.0 1.2
x

−4

−2

0

2

4

6

8

f(
x)

Posterior mean
Training data
Samples
Posterior uncertainty

Figure: Generated with GPflow (Matthews et
al., 2017)

19

Stochastic approximate inference

▶ Generating a function draw: Sampling
from a T -dimensional multivariate
Gaussian
T : Number of query points

▶ Drawing a sample from a GP scales
cubically in T

▶ There are some ways around this in low
dimensions (e.g., Särkkä et al., 2013;
Solin et al., 2018) or by making
structural assumptions (e.g., Pleiss et
al., 2018)

Let’s try something else

0.0 0.2 0.4 0.6 0.8 1.0 1.2
x

−4

−2

0

2

4

6

8

f(
x)

Posterior mean
Training data
Samples
Posterior uncertainty

Figure: Generated with GPflow (Matthews et
al., 2017)

19

Stochastic approximate inference

▶ Generating a function draw: Sampling
from a T -dimensional multivariate
Gaussian
T : Number of query points

▶ Drawing a sample from a GP scales
cubically in T

▶ There are some ways around this in low
dimensions (e.g., Särkkä et al., 2013;
Solin et al., 2018) or by making
structural assumptions (e.g., Pleiss et
al., 2018)

Let’s try something else

0.0 0.2 0.4 0.6 0.8 1.0 1.2
x

−4

−2

0

2

4

6

8

f(
x)

Posterior mean
Training data
Samples
Posterior uncertainty

Figure: Generated with GPflow (Matthews et
al., 2017)

19

Decoupled sampling (Wilson et al., 2020a)

Key idea
Sample functions from a Gaussian process by exploiting Matheron’s rule
(for Gaussian random variables):

posterior = prior + data-dependent update

▶ Think about the posterior in terms of samples, not in terms of (conditional)
distributions

▶ Samples from the posterior can be obtained through a two-step procedure:
1. Sample from prior Source of randomness
2. “Correct” sample using a data-dependent update term

Deterministic transformation

20

Decoupled sampling (Wilson et al., 2020a)

Key idea
Sample functions from a Gaussian process by exploiting Matheron’s rule
(for Gaussian random variables):

posterior = prior + data-dependent update

▶ Think about the posterior in terms of samples, not in terms of (conditional)
distributions

▶ Samples from the posterior can be obtained through a two-step procedure:
1. Sample from prior Source of randomness
2. “Correct” sample using a data-dependent update term

Deterministic transformation

20

Decoupled sampling (Wilson et al., 2020a)

Key idea
Sample functions from a Gaussian process by exploiting Matheron’s rule
(for Gaussian random variables):

posterior = prior + data-dependent update

▶ Think about the posterior in terms of samples, not in terms of (conditional)
distributions

▶ Samples from the posterior can be obtained through a two-step procedure:
1. Sample from prior Source of randomness
2. “Correct” sample using a data-dependent update term

Deterministic transformation
20

Illustration: Decoupled sampling (Wilson et al., 2020a)

+ =

0.0 0.5 1.0

−2.5

0.0

2.5

Prior function

0.0 0.5 1.0

−2.5

0.0

2.5

Pathwise update

0.0 0.5 1.0

−2.5

0.0

2.5

Conditioned path

f (s)(·)
sample from prior

k(·,X)K−1(y − f (s)(X))

data-dependent update

f (s)(·)|X,y

sample from posterior

+ =

1. Sample from the prior

2. Add data-dependent update term
Sample from the posterior

21

Illustration: Decoupled sampling (Wilson et al., 2020a)

+

=

0.0 0.5 1.0

−2.5

0.0

2.5

Prior function

0.0 0.5 1.0

−2.5

0.0

2.5

Pathwise update

0.0 0.5 1.0

−2.5

0.0

2.5

Conditioned path

f (s)(·)
sample from prior

k(·,X)K−1(y − f (s)(X))

data-dependent update

f (s)(·)|X,y

sample from posterior

+

=

1. Sample from the prior
2. Add data-dependent update term

Sample from the posterior

21

Illustration: Decoupled sampling (Wilson et al., 2020a)

+ =

0.0 0.5 1.0

−2.5

0.0

2.5

Prior function

0.0 0.5 1.0

−2.5

0.0

2.5

Pathwise update

0.0 0.5 1.0

−2.5

0.0

2.5

Conditioned path

f (s)(·)
sample from prior

k(·,X)K−1(y − f (s)(X))

data-dependent update

f (s)(·)|X,y

sample from posterior

+ =

1. Sample from the prior
2. Add data-dependent update term

Sample from the posterior

21

Properties

f (s)(·)
sample

from prior

+ k(·,X)K−1(y − f (s)(X))

data-dependent update

= f (s)(·)|X,y

sample
from posterior

0.0 0.5 1.0

−2.5

0.0

2.5

Pathwise update

▶ Update term depends on error/residual between the prior sample and data y

▶ Update term is a mapping from prior to posterior
▶ Different representations for prior and update terms

(e.g., RFF for prior and finite basis-function representation for update)

▶ Sampling from RFF prior scales linearly in the number T of test inputs
▶ Update term can be computed linearly in the number T of test inputs

▶ Functions can be sampled efficiently (linearly in the number of test inputs)

22

Properties

f (s)(·)
sample

from prior

+ k(·,X)K−1(y − f (s)(X))

data-dependent update

= f (s)(·)|X,y

sample
from posterior

0.0 0.5 1.0

−2.5

0.0

2.5

Pathwise update

▶ Update term depends on error/residual between the prior sample and data y
▶ Update term is a mapping from prior to posterior

▶ Different representations for prior and update terms
(e.g., RFF for prior and finite basis-function representation for update)

▶ Sampling from RFF prior scales linearly in the number T of test inputs
▶ Update term can be computed linearly in the number T of test inputs

▶ Functions can be sampled efficiently (linearly in the number of test inputs)

22

Properties

f (s)(·)
sample

from prior

+ k(·,X)K−1(y − f (s)(X))

data-dependent update

= f (s)(·)|X,y

sample
from posterior

0.0 0.5 1.0

−2.5

0.0

2.5

Pathwise update

▶ Update term depends on error/residual between the prior sample and data y
▶ Update term is a mapping from prior to posterior
▶ Different representations for prior and update terms

(e.g., RFF for prior and finite basis-function representation for update)

▶ Sampling from RFF prior scales linearly in the number T of test inputs
▶ Update term can be computed linearly in the number T of test inputs

▶ Functions can be sampled efficiently (linearly in the number of test inputs)

22

Properties

f (s)(·)
sample

from prior

+ k(·,X)K−1(y − f (s)(X))

data-dependent update

= f (s)(·)|X,y

sample
from posterior

0.0 0.5 1.0

−2.5

0.0

2.5

Pathwise update

▶ Update term depends on error/residual between the prior sample and data y
▶ Update term is a mapping from prior to posterior
▶ Different representations for prior and update terms

(e.g., RFF for prior and finite basis-function representation for update)
▶ Sampling from RFF prior scales linearly in the number T of test inputs

▶ Update term can be computed linearly in the number T of test inputs
▶ Functions can be sampled efficiently (linearly in the number of test inputs)

22

Properties

f (s)(·)
sample

from prior

+ k(·,X)K−1(y − f (s)(X))

data-dependent update

= f (s)(·)|X,y

sample
from posterior

0.0 0.5 1.0

−2.5

0.0

2.5

Pathwise update

▶ Update term depends on error/residual between the prior sample and data y
▶ Update term is a mapping from prior to posterior
▶ Different representations for prior and update terms

(e.g., RFF for prior and finite basis-function representation for update)
▶ Sampling from RFF prior scales linearly in the number T of test inputs
▶ Update term can be computed linearly in the number T of test inputs

▶ Functions can be sampled efficiently (linearly in the number of test inputs)

22

Properties

f (s)(·)
sample

from prior

+ k(·,X)K−1(y − f (s)(X))

data-dependent update

= f (s)(·)|X,y

sample
from posterior

0.0 0.5 1.0

−2.5

0.0

2.5

Pathwise update

▶ Update term depends on error/residual between the prior sample and data y
▶ Update term is a mapping from prior to posterior
▶ Different representations for prior and update terms

(e.g., RFF for prior and finite basis-function representation for update)
▶ Sampling from RFF prior scales linearly in the number T of test inputs
▶ Update term can be computed linearly in the number T of test inputs

▶ Functions can be sampled efficiently (linearly in the number of test inputs)

22

Applications

Original Mean Stddev. Sample Sample Sample

From Wilson et al. (2020b) From Borovitskiy et al. (2020)

▶ Deep convolutional GP auto-encoders (Wilson et al., 2020b)
▶ Bayesian optimization with Thompson sampling (Wilson et al., 2020a)
▶ Sampling from GPs on manifolds (Borovitskiy et al., 2020)
▶ Model-based reinforcement learning

23

Summary

−3 −2 −1 0 1 2 3
−1

0

1

2

3

x(1)

x(2
)

t=0
t=1

t=2

t=T

t=5

t

f(
x t

)
▶ Propagate uncertainty through a nonlinear dynamical system
▶ Deterministic approximate inference (linearization, unscented transformation)
▶ Stochastic approximate inference (sampling)
▶ Examples in the context of GP dynamical systems

24

References

Bischoff, B., Nguyen-Tuong, D., Koller, T., Markert, H., and Knoll, A. (2013a). Learning Throttle Valve
Control Using Policy Search. In Proceedings of the European Conference on Machine Learning and
Knowledge Discovery in Databases.

Bischoff, B., Nguyen-Tuong, D., Markert, H., and Knoll, A. (2013b). Learning Control Under Uncertainty: A
Probabilistic Value-Iteration Approach. In Proceedings of the European Symposium on Artificial Neural
Networks.

Borovitskiy, V., Terenin, A., Mostowsky, P., and Deisenroth, M. P. (2020). Matern Gaussian Processes on
Riemannian Manifolds. In Advances in Neural Information Processing Systems.

Deisenroth, M. P., Huber, M. F., and Hanebeck, U. D. (2009). Analytic Moment-based Gaussian Process
Filtering. In Proceedings of the International Conference on Machine Learning.

Deisenroth, M. P. and Rasmussen, C. E. (2011). PILCO: A Model-Based and Data-Efficient Approach to
Policy Search. In Proceedings of the International Conference on Machine Learning.

25

References (cont.)

Deisenroth, M. P., Rasmussen, C. E., and Fox, D. (2011). Learning to Control a Low-Cost Manipulator using
Data-Efficient Reinforcement Learning. In Proceedings of Robotics: Science and Systems.

Doucet, A., Godsill, S. J., and Andrieu, C. (2000). On Sequential Monte Carlo Sampling Methods for
Bayesian Filtering. Statistics and Computing, 10:197–208.

Englert, P., Paraschos, A., Peters, J., and Deisenroth, M. P. (2013). Model-based Imitation Learning by
Probabilistic Trajectory Matching. In Proceedings of the International Conference on Robotics and
Automation.

Girard, A., Rasmussen, C. E., Quiñonero Candela, J., and Murray-Smith, R. (2003). Gaussian Process Priors
with Uncertain Inputs—Application to Multiple-Step Ahead Time Series Forecasting. In Advances in
Neural Information Processing Systems.

Julier, S. J. and Uhlmann, J. K. (2004). Unscented Filtering and Nonlinear Estimation. Proceedings of the
IEEE, 92(3):401–422.

26

References (cont.)

Julier, S. J., Uhlmann, J. K., and Durrant-Whyte, H. F. (1995). A New Method for the Nonlinear
Transformation of Means and Covariances in Filters and Estimators. In Proceedings of the American
Control Conference.

Ko, J. and Fox, D. (2009). GP-BayesFilters: Bayesian Filtering using Gaussian Process Prediction and
Observation Models. Autonomous Robots, 27(1):75–90.

Kupcsik, A., Deisenroth, M. P., Peters, J., Poha, L. A., Vadakkepata, P., and Neumann, G. (2017).
Model-based Contextual Policy Search for Data-Efficient Generalization of Robot Skills. Artificial
Intelligence.

Matthews, A. G. d. G., van der Wilk, M., Nickson, T., Fujii, K., Boukouvalas, A., León-Villagrá, P.,
Ghahramani, Z., and Hensman, J. (2017). GPflow: A Gaussian Process Library using TensorFlow. Journal
of Machine Learning Research, 18(40):1–6.

McHutchon, A. (2014). Nonlinear Modelling and Control usingGaussian Processes. PhD thesis, University of
Cambridge.

27

References (cont.)

Ohab, R. F. and Stubberud, A. R. (1965). A Technique for Estimating the State of a Nonlinear System.
IEEE Transactions on Automatic Control, 10:150–155.

Pleiss, G., Gardner, J. R., Weinberger, K. Q., and Wilson, A. G. (2018). Constant-Time Predictive
Distributions for Gaussian Processes. In Proceedings of the International Conference on Machine Learning.

Quiñonero-Candela, J., Girard, A., Larsen, J., and Rasmussen, C. E. (2003). Propagation of Uncertainty in
Bayesian Kernel Models—Application to Multiple-Step Ahead Forecasting. In IEEE International
Conference on Acoustics, Speech and Signal Processing.

Särkkä, S., Solin, A., and Hartikainen, J. (2013). Spatiotemporal Learning via Infinite-Dimensional Bayesian
Filtering and Smoothing: A Look at Gaussian Process Regression Through Kalman Filtering,. IEEE Signal
Processing Magazine, 30(4):51–61.

Smith, G. L., Schmidt, S. F., and McGee, L. A. (1962). Application of Statistical Filter Theory to the
Optimal Estimation of Position and Velocity on Board a Circumlunar Vehicle. Technical report, NASA.

28

References (cont.)

Solin, A., Hensman, J., and Turner, R. E. (2018). Infinite-Horizon Gaussian Processes. In Advances in
Neural Information Processing Systems.

Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic Robotics. The MIT Press.
Wilson, J. T., Borovitskiy, V., Terenin, A., Mostowsky, P., and Deisenroth, M. P. (2020a). Efficiently

Sampling Functions from Gaussian Process Posteriors. In Proceedings of the International Conference on
Machine Learning.

Wilson, J. T., Borovitskiy, V., Terenin, A., Mostowsky, P., and Deisenroth, M. P. (2020b). Pathwise
Conditioning of Gaussian Processes. arXiv:2011.04026.

29

	Deterministic Approximate Inference
	Stochastic Approximate Inference
	Inference in Gaussian Process Time Series Models
	References

	anm1:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	anm0:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

