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Setting

▶ Time-series model

xt+1 = f(xt) + ϵ, x0 ∼ p(x0), ϵ ∼ N
(
0, Q

)

▶ Compute an expected utility of a state trajectory τ := (x0, . . . ,xT )

Eτ [U(τ )]

▶ Reinforcement learning and optimal control
▶ Demand forecasting (logistics)
▶ Weather/climate forecasts

▶ Challenge: Long-term predictions and uncertainty propagation
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Approaches

▶ Deterministic inference via iterative computation
▶ Iteratively determine marginal distributions p(x1), . . . , p(xT )
▶ Compute expectations Ext [u(xt)] and compute utilities of the form

Eτ [U(τ )] =
T∑
t=0

Ext [u(xt)] =
T∑
t=0

∫
u(xt)p(xt)dxt

▶ Stochastic inference via trajectory sampling
▶ Generate sample trajectories τ (s) = (x

(s)
0 , . . . ,x

(s)
T )

▶ Monte-Carlo integration

Eτ [U(τ )] ≈ 1

S

S∑
s=1

U(τ (s))
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Deterministic Approximate Inference



Deterministic approximate inference

▶ Iteratively compute marginals

p(xt+1) =

∫
p(xt+1|xt)p(xt)dxt

=

∫
N
(
f(xt), Q

)
p(xt)dxt

xt+1 = f(xt)+ϵ, ϵ ∼ N
(
0, Q

)

No closed-form solution for
nonlinear f

3
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Iterative Gaussian approximation

▶ Common approach: Iterative Gaussian
approximation of marginals:

p(xt) ≈ N
(
µt, Σt

)
−3 −2 −1 0 1 2 3
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x(2
)

t=0
t=1

t=2

t=T

t=5

▶ Linearization

▶ Unscented transformation
▶ Moment matching

Extended Kalman filter
Unscented Kalman filter
Assumed density filter
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Two approaches

p(xt+1) =

∫
N
(
xt+1

∣∣f(xt),Q
)
p(xt)dxt ≈ N

(
xt+1

∣∣µt+1,Σt+1

)

▶ Approximate f

▶ Approximate p(xt)

Linearization (e.g., Smith et al., 1962)
Unscented transformation (Julier & Uhlmann, 1995)
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Approach 1: Linearization

Key idea (e.g., Smith et al., 1962; Ohab &
Stubberud, 1965)
1. Locally linearize f around mean µt

2. Compute predictive distribution (Gaussian) for
linearized function in closed form

x

f(
x)

f
flin

p(x)

▶ Linearization: First-order Taylor-series expansion around µt

Gradient (Jacobian) df/dxt of f evaluated at µt
▶ Key insight: Gaussians can be pushed through linear functions in closed form
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How it works

x

p(
x)

Input distribution

f(
x)

f▶ Compute gradient J t := df/dxt|xt=µt

▶ Linearized model:

f(x) ≈ f(µt) + J t(x− µt)

▶ Approximate predictive distribution is
Gaussian:

p(f(xt)) ≈ N
(
f(µt), J tΣtJ

⊤
t

)
p(xt+1) ≈ N

(
f(µt), J tΣtJ

⊤
t +Q

)
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Linearization: Properties

x

p(
x)

Input distribution

f(
x)

f
flin

p( f (x))

Ground truth
Linearization▶ Conceptually straightforward

▶ Requires differentiable f

▶ Tends to underestimate true covariance
matrix Overconfidence

▶ Scales cubically in the dimension of x
▶ Widely used in engineering

(e.g., navigation systems, GPS, Apollo
missions)
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Approach 2: Unscented transformation

Key idea (Julier & Uhlmann, 1995)
1. Approximate p(xt) using a small set of

deterministically chosen sigma points
2. Map sigma points through f

3. Compute a weighted average of the mean and
covariance of the predictive distribution.

x

f(
x)

f
p(x)

Sigma points
Mapped sigma points

9



How it works

x

p(
x)

Input distribution
Sigma points

f(
x)

f▶ Determine 2D + 1 sigma points
Xt = {µt ± α

(√
Σt

)
i
, i = 1, . . . , D}

▶ Map sigma points through f to get f(Xt)

▶ Compute mean/covariance of predictive
distribution p(f(xt)) as a weighted average

µt+1 ≈
2D+1∑
d=1

wµ
df(X

(d)
t )

Σt+1 ≈
2D+1∑
d=1

wΣ
d (f(X

(d)
t )− µt+1)(f(X

(d)
t )− µt+1)

⊤

10
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Unscented transformation: Properties

x

p(
x)

Input distribution
Sigma points

f(
x)

f

p( f (x))

Ground truth
UT approximation▶ Not a Monte-Carlo method: Sigma points are

deterministic, not random
▶ No explicit calculation of Jacobians

f can be non-differentiable
▶ Input distribution does not need to be Gaussian
▶ Higher accuracy (covariance) than linearization

(Julier & Uhlmann, 2004)
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Stochastic Approximate Inference



Stochastic approximate inference

▶ Sample trajectories τ (i) =
(
x
(i)
0 , . . . ,x

(i)
T

)
:

1. Sample initial state: x
(i)
0 ∼ p(x0)

2. For t = 1, . . . , T :

x
(i)
t ∼ p(xt|x(i)

t−1) = N
(
xt

∣∣f(x(i)
t−1),Q

)

▶ No parametric restriction to a specific kind of distribution
▶ Have to store all samples (particles) Potential memory issue
▶ Sequential Monte Carlo (particle filter)

(e.g., Doucet et al., 2000; Thrun et al., 2005;)
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Discussion: Long-term predictions

Deterministic Stochastic
Density representation Parametric Particles
Bias Yes No
Time correlation No Yes
Speed Fast (Slow)
Parallelization Easy
Memory consumption Low (High)
Gradients Deterministic Stochastic

−3 −2 −1 0 1 2 3
−1

0

1

2

3

x(1)

x(2
)

t=0
t=1

t=2

t=T

t=5

t

f(
x t

)
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Inference in Gaussian Process Time Series Models



Setting

▶ Time-series model

xt+1 = f(xt) + ϵ, x0 ∼ p(x0), ϵ ∼ N
(
0, Q

)
, f ∼ GP (µ, k)

▶ Two approaches for long-term predictions:
▶ Deterministic approximate inference of the marginals p(x1), . . . , p(xT )
▶ Stochastic approximate inference by sampling trajectories

τ (i) = (x
(i)
0 , . . . ,x

(i)
T )
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Deterministic approximate inference

p(xt+1) =

∫
p(xt+1|xt)p(xt)dxt

=

∫ ∫
p(f(xt)|f,xt)p(f)dfp(xt)dxt

Approaches:
▶ Linearization (e.g., Ko & Fox, 2009)
▶ Unscented transformation (e.g., Ko & Fox, 2009)
▶ Moment matching (e.g., Deisenroth et al., 2009)
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Long-term predictions

−3 −2 −1 0 1 2 3
−1

0

1

2

3

x(1)

x(2
)

t=0
t=1

t=2

t=T

t=5

▶ Iteratively compute p(x1), . . . , p(xT )

p(xt+1) =

∫∫

p(xt+1|xt)

GP prediction

p(xt)

N (µt,Σt)

df dxt

▶ GP moment matching (Girard et al., 2003; Quiñonero-Candela et al., 2003)
▶ Key ingredient: Computing kernel expectations
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Example: Model-based reinforcement learning

▶ Learn dynamics of a physical system
from data Gaussian process

▶ Given the learned system, find policy
parameters θ∗ that minimize an
expected long-term cost

Eτ [U(τ )] =
∑T

t=1
Ext [c(xt)]

▶ GP moment matching for long-term
predictions

▶ Gradient descent to find θ∗

xt+1 = f(xt,ut) + ϵ, f ∼ GP

ut = π(xt;θ)

From Deisenroth & Rasmussen (2011)
https://www.youtube.com/PilcoLearner
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Wide Applicability

Deisenroth et al. (2011) Englert et al. (2013) Kupcsik et al. (2017)

Bischoff et al. (2013b) McHutchon (2014) Bischoff et al. (2013a)

Application to a wide range of robotic systems
18



Stochastic approximate inference

▶ Generating a function draw: Sampling
from a T -dimensional multivariate
Gaussian
T : Number of query points

▶ Drawing a sample from a GP scales
cubically in T

▶ There are some ways around this in low
dimensions (e.g., Särkkä et al., 2013;
Solin et al., 2018) or by making
structural assumptions (e.g., Pleiss et
al., 2018)

Let’s try something else

Figure: Generated with GPflow (Matthews et
al., 2017)

19
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Decoupled sampling (Wilson et al., 2020a)

Key idea
Sample functions from a Gaussian process by exploiting Matheron’s rule
(for Gaussian random variables):

posterior = prior + data-dependent update

▶ Think about the posterior in terms of samples, not in terms of (conditional)
distributions

▶ Samples from the posterior can be obtained through a two-step procedure:
1. Sample from prior Source of randomness
2. “Correct” sample using a data-dependent update term

Deterministic transformation

20
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distributions

▶ Samples from the posterior can be obtained through a two-step procedure:
1. Sample from prior Source of randomness
2. “Correct” sample using a data-dependent update term

Deterministic transformation
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Illustration: Decoupled sampling (Wilson et al., 2020a)
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Properties
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from prior
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= f (s)(·)|X,y
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Pathwise update

▶ Update term depends on error/residual between the prior sample and data y

▶ Update term is a mapping from prior to posterior
▶ Different representations for prior and update terms

(e.g., RFF for prior and finite basis-function representation for update)

▶ Sampling from RFF prior scales linearly in the number T of test inputs
▶ Update term can be computed linearly in the number T of test inputs

▶ Functions can be sampled efficiently (linearly in the number of test inputs)
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Applications

Original Mean Stddev. Sample Sample Sample

From Wilson et al. (2020b) From Borovitskiy et al. (2020)

▶ Deep convolutional GP auto-encoders (Wilson et al., 2020b)
▶ Bayesian optimization with Thompson sampling (Wilson et al., 2020a)
▶ Sampling from GPs on manifolds (Borovitskiy et al., 2020)
▶ Model-based reinforcement learning
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Summary
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)
▶ Propagate uncertainty through a nonlinear dynamical system
▶ Deterministic approximate inference (linearization, unscented transformation)
▶ Stochastic approximate inference (sampling)
▶ Examples in the context of GP dynamical systems
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