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Gradients in machine learning

▶ In machine learning, we use gradients to train
▶ Training = optimize objective function w.r.t. model parameters
▶ Examples: curve fitting, neural networks, mixture models
▶ For functions f(x) we want its gradient ∇f(x)
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Motivation

How do we efficiently calculate a gradient?
For example, the gradient of

exp(x)
x2

looks a lot more complex

exp(x)(x− 2)

x3

(example from Wikipedia)
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Motivation

Cache intermediate results
However, it turns out that we can reduce computational cost of computing the gradient if
we cache intermediate results.

Trade off computational complexity for space complexity.
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Why learn about backpropagation?

▶ Composition of functions = multiplication of gradients
▶ Automatic differentiation is implemented in modern machine learning tools
▶ Learn concepts of calculation of gradients
▶ Goal: show links to results of calculus and optimization

Backpropagation is just ...
the chain rule of differentiation

4
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Recall: Chain rule

Scalar chain rule (
g(f(x))

)′
= (g ◦ f)′(x) = g′(f(x))f ′(x)

where g ◦ f is a function composition x 7→ f(x) 7→ g(f(x)).

Vector chain rule
∂

∂x
(g ◦ f)(x) = ∂

∂x

(
g(f(x))

)
=

∂g

∂f

∂f

∂x

where we define the gradient as a row vector

∇xf = gradf =
df

dx
=

[
∂f(x)
∂x1

∂f(x)
∂x2

· · · ∂f(x)
∂xn

]
∈ R1×n .
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Why row vector for gradients?

Representing a gradient as a row vector allows us to think of the chain rule as matrix
multiplication.

If f(x1, x2) is a function of x1 and x2, where x1(s, t) and x2(s, t) are themselves functions
of two variables s and t, the chain rule shows that the gradient is obtained by the matrix
multiplication

df

d(s, t)
=

∂f

∂x

∂x

∂(s, t)
=

[
∂f
∂x1

∂f
∂x2

]
︸ ︷︷ ︸

= ∂f
∂x

[
∂x1
∂s

∂x1
∂t

∂x2
∂s

∂x2
∂t

]
︸ ︷︷ ︸

= ∂x
∂(s,t)

.
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Careful with notation

Define the variable y as the output of f(x) and the variable z as the output of g(y), then
we can write in Leibniz notation,

dz

dx
=

dz

dy

dy

dx
.

More precisely
dz

dx

∣∣∣∣
x

=
dz

dy

∣∣∣∣
y(x)

dy

dx

∣∣∣∣
x

.

x f(·) y g(·) z
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Automatic differentiation as cached chain rule

Consider a function G(x) := g(f(x)), with intermediate variable y and final output z.

x f(·) y g(·) z

▶ y = f(x) and z = g(y)

▶ Think of y as a "cache" of the results of computing f(x)

▶ When computing the gradient (going right to left), there is another "cache".
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Automatic differentiation as cached chain rule

Given a function G(w) := g(f(e(w))), with intermediate variables x, y and final output z.

w e(·) x f(·) y g(·) z

We can cache the chain rule from the left (forward) or the right (reverse).

dz

dw
=

dz

dy

(
dy

dx

dx

dw

)
(forward mode)

dz

dw
=

(
dz

dy

dy

dx

)
dx

dw
(reverse mode)
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Origin story...

Who invented backprop?
http://people.idsia.ch/~juergen/who-invented-backpropagation.html

Paul Werbos, PhD thesis 1974:
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Pointers to literature

▶ History (Wengert, 1964; Werbos, 1975)
▶ Computer implementation of automatic differentiation (Speelpenning, 1980)
▶ Automatic differentiation survey (Baydin et al., 2018)
▶ Introduction to automatic differentiation (Griewank and Walther, 2003, 2008)
▶ Mathematical introduction for forward mode (Hoffmann, 2016)
▶ Hessian vector products (Pearlmutter, 1994; Schraudolph, 2002)
▶ https://autodiff-workshop.github.io/

Armin Elmendorf, 1918

11

https://autodiff-workshop.github.io/


Think of a pair of numbers

Intuition
Associate every variable a with its derivative with respect to an output value.
Think of the derivative as a "function".

▶ Automatic differentiation augments each variable (for example a) with an adjoint
variable ←−a to form an adjoint pair (a,←−a ).

▶ The adjoint ←−a of a is the partial differential operator ∂
∂a .

▶ The pair (a,←−a ) is called a dual number.

12



Automatic differentiation

Two modes of automatic differentiation, for a function f : RD → RM

forward mode (efficient when D �M)
Dual number (a,←−a ) can be represented as a matrix

[
a ←−a
0 a

]

reverse mode (efficient when D �M)
Consists of two passes, going from inputs to outputs and outputs to inputs.

13
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Forward mode: Simple examples

sum
The gradient of a sum is a sum of the gradients

(x,←−x ) + (y,←−y ) =

[
x ←−x
0 x

]
+

[
y ←−y
0 y

]
=

[
x+ y ←−x +←−y
0 x+ y

]
= (x+ y,←−x +←−y )

x

+

y

z
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Forward mode: Simple examples

product
The gradient is given by the product rule of calculus

(x,←−x )× (y,←−y ) =

[
x ←−x
0 x

]
×
[
y ←−y
0 y

]
=

[
xy x←−y + y←−x
0 xy

]
= (xy, x←−y + y←−x )

x

×

y

z
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Reverse mode autodiff

Also known as backpropagation, has two phases:
Forward pass

▶ Calculate the forward pass for evaluating the function
▶ At the same time cache all the partial differentials

Reverse pass
▶ Set the adjoint (gradient) of the output node to 1
▶ Increase the input adjoint by the product of the output adjoint with the

forward partials

Key Challenge
Need the computations to be done in topological order
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Reverse mode automatic differentiation

Given a function G(w) := g(f(e(w))), with intermediate variables x, y and final output z.

w e(·) x f(·) y g(·) z

Input adjoint = output adjoint × forward partials

dz

dw︸︷︷︸
←−w

=

(
dz

dy

dy

dx

)
︸ ︷︷ ︸

←−x

dx

dw
(reverse mode)
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What to do with branches

Consider the case of a sum

z = x+ y ,

has derivative

dz

dx
= 1 and dz

dy
= 1 .

←−x =←−z × dz

dx
and ←−y =←−z × dz

dy

x

+

y

z
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Reverse mode: Simple examples

sum
An add gate is a gradient distributor

Gradient w.r.t. x,

←−x+ =←−z

Gradient w.r.t. y

←−y + =←−z

x

+

y

z
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Reverse mode: Simple examples

product
A multiplication gate is a gradient switcher

Gradient w.r.t. x,

←−x+ =←−z y

Gradient w.r.t. y

←−y + = x←−z

x

×

y

z
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Summary

▶ Modern machine learning powered by automatic differentiation libraries
▶ Forward mode autodiff: matrix multiplication
▶ Reverse mode autodiff: input adjoint = output adjoint × partial derivative
▶ How to efficiently combine forward and reverse mode autodiff is still an open question
▶ Think of the pair of variable and its adjoint (x,←−x )

Backpropagation is just . . .
chain rule of differentiation with caching
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