
T
h
e
r
e
 and Back Again: A Tale of

E
x

p
e
c
t
a
t
io

n
s

a
n
d

S
l

opes. A Neurips 2020 Tut o
r
ia

l

b
y

M
a
r
c

D
e
is

e
n
r
o

th and

Heights
MonteCarlo

N
ormalizing F

low

integration

num
erical

Sw
am

ps of

U
n
ro

ll
in

g
H
il
ls

 O
f
T
im

e

b

A

C

D

T
h
e
r
e
 and Back Again: A Tale of

E
x

p
e
c
t
a
t
io

n
s

a
n
d

S
l

opes. A Neurips 2020 Tut o
r
ia

l

b
y

M
a
r
c

D
e
is

e
n
r
o

th and

Bay
Backprop

Heights
MonteCarlo

N
ormalizing F

low

integration

num
erical

Sw
am

ps of

U
nr

ol
li
ng

 H
il
ls

 O
f
T
im

e

b

A

C

D

E

Backpropagation and automatic differentiation
Cheng Soon Ong

Marc Peter Deisenroth

December 2020

Marc Deisenrot
h

an
d

Che
ng

 Soon Ong’s Tut
or

ial at

C
M

Gradients in machine learning

▶ In machine learning, we use gradients to train
▶ Training = optimize objective function w.r.t. model parameters
▶ Examples: curve fitting, neural networks, mixture models
▶ For functions f(x) we want its gradient ∇f(x)

1

Motivation

How do we efficiently calculate a gradient?
For example, the gradient of

exp(x)
x2

looks a lot more complex

exp(x)(x− 2)

x3

(example from Wikipedia)

2

Motivation

Cache intermediate results
However, it turns out that we can reduce computational cost of computing the gradient if
we cache intermediate results.

Trade off computational complexity for space complexity.

3

Why learn about backpropagation?

▶ Composition of functions = multiplication of gradients
▶ Automatic differentiation is implemented in modern machine learning tools
▶ Learn concepts of calculation of gradients
▶ Goal: show links to results of calculus and optimization

Backpropagation is just ...
the chain rule of differentiation

4

Why learn about backpropagation?

▶ Composition of functions = multiplication of gradients
▶ Automatic differentiation is implemented in modern machine learning tools
▶ Learn concepts of calculation of gradients
▶ Goal: show links to results of calculus and optimization

Backpropagation is just ...
the chain rule of differentiation

4

Recall: Chain rule

Scalar chain rule (
g(f(x))

)′
= (g ◦ f)′(x) = g′(f(x))f ′(x)

where g ◦ f is a function composition x 7→ f(x) 7→ g(f(x)).

Vector chain rule
∂

∂x
(g ◦ f)(x) = ∂

∂x

(
g(f(x))

)
=

∂g

∂f

∂f

∂x

where we define the gradient as a row vector

∇xf = gradf =
df

dx
=

[
∂f(x)
∂x1

∂f(x)
∂x2

· · · ∂f(x)
∂xn

]
∈ R1×n .

5

Why row vector for gradients?

Representing a gradient as a row vector allows us to think of the chain rule as matrix
multiplication.

If f(x1, x2) is a function of x1 and x2, where x1(s, t) and x2(s, t) are themselves functions
of two variables s and t, the chain rule shows that the gradient is obtained by the matrix
multiplication

df

d(s, t)
=

∂f

∂x

∂x

∂(s, t)
=

[
∂f
∂x1

∂f
∂x2

]
︸ ︷︷ ︸

= ∂f
∂x

[
∂x1
∂s

∂x1
∂t

∂x2
∂s

∂x2
∂t

]
︸ ︷︷ ︸

= ∂x
∂(s,t)

.

6

Careful with notation

Define the variable y as the output of f(x) and the variable z as the output of g(y), then
we can write in Leibniz notation,

dz

dx
=

dz

dy

dy

dx
.

More precisely
dz

dx

∣∣∣∣
x

=
dz

dy

∣∣∣∣
y(x)

dy

dx

∣∣∣∣
x

.

x f(·) y g(·) z

7

Automatic differentiation as cached chain rule

Consider a function G(x) := g(f(x)), with intermediate variable y and final output z.

x f(·) y g(·) z

▶ y = f(x) and z = g(y)

▶ Think of y as a "cache" of the results of computing f(x)

▶ When computing the gradient (going right to left), there is another "cache".

8

Automatic differentiation as cached chain rule

Given a function G(w) := g(f(e(w))), with intermediate variables x, y and final output z.

w e(·) x f(·) y g(·) z

We can cache the chain rule from the left (forward) or the right (reverse).

dz

dw
=

dz

dy

(
dy

dx

dx

dw

)
(forward mode)

dz

dw
=

(
dz

dy

dy

dx

)
dx

dw
(reverse mode)

9

Origin story...

Who invented backprop?
http://people.idsia.ch/~juergen/who-invented-backpropagation.html

Paul Werbos, PhD thesis 1974:

10

http://people.idsia.ch/~juergen/who-invented-backpropagation.html

Pointers to literature

▶ History (Wengert, 1964; Werbos, 1975)
▶ Computer implementation of automatic differentiation (Speelpenning, 1980)
▶ Automatic differentiation survey (Baydin et al., 2018)
▶ Introduction to automatic differentiation (Griewank and Walther, 2003, 2008)
▶ Mathematical introduction for forward mode (Hoffmann, 2016)
▶ Hessian vector products (Pearlmutter, 1994; Schraudolph, 2002)
▶ https://autodiff-workshop.github.io/

Armin Elmendorf, 1918

11

https://autodiff-workshop.github.io/

Think of a pair of numbers

Intuition
Associate every variable a with its derivative with respect to an output value.
Think of the derivative as a "function".

▶ Automatic differentiation augments each variable (for example a) with an adjoint
variable ←−a to form an adjoint pair (a,←−a).

▶ The adjoint ←−a of a is the partial differential operator ∂
∂a .

▶ The pair (a,←−a) is called a dual number.

12

Automatic differentiation

Two modes of automatic differentiation, for a function f : RD → RM

forward mode (efficient when D �M)
Dual number (a,←−a) can be represented as a matrix

[
a ←−a
0 a

]

reverse mode (efficient when D �M)
Consists of two passes, going from inputs to outputs and outputs to inputs.

13

Automatic differentiation

Two modes of automatic differentiation, for a function f : RD → RM

forward mode (efficient when D �M)
Dual number (a,←−a) can be represented as a matrix

[
a ←−a
0 a

]

reverse mode (efficient when D �M)
Consists of two passes, going from inputs to outputs and outputs to inputs.

13

Forward mode: Simple examples

sum
The gradient of a sum is a sum of the gradients

(x,←−x) + (y,←−y) =

[
x ←−x
0 x

]
+

[
y ←−y
0 y

]
=

[
x+ y ←−x +←−y
0 x+ y

]
= (x+ y,←−x +←−y)

x

+

y

z

14

Forward mode: Simple examples

product
The gradient is given by the product rule of calculus

(x,←−x)× (y,←−y) =

[
x ←−x
0 x

]
×
[
y ←−y
0 y

]
=

[
xy x←−y + y←−x
0 xy

]
= (xy, x←−y + y←−x)

x

×

y

z

15

Reverse mode autodiff

Also known as backpropagation, has two phases:
Forward pass

▶ Calculate the forward pass for evaluating the function
▶ At the same time cache all the partial differentials

Reverse pass
▶ Set the adjoint (gradient) of the output node to 1
▶ Increase the input adjoint by the product of the output adjoint with the

forward partials

Key Challenge
Need the computations to be done in topological order

16

Reverse mode automatic differentiation

Given a function G(w) := g(f(e(w))), with intermediate variables x, y and final output z.

w e(·) x f(·) y g(·) z

Input adjoint = output adjoint × forward partials

dz

dw︸︷︷︸
←−w

=

(
dz

dy

dy

dx

)
︸ ︷︷ ︸

←−x

dx

dw
(reverse mode)

17

What to do with branches

Consider the case of a sum

z = x+ y ,

has derivative

dz

dx
= 1 and dz

dy
= 1 .

←−x =←−z × dz

dx
and ←−y =←−z × dz

dy

x

+

y

z

18

Reverse mode: Simple examples

sum
An add gate is a gradient distributor

Gradient w.r.t. x,

←−x+ =←−z

Gradient w.r.t. y

←−y + =←−z

x

+

y

z

19

Reverse mode: Simple examples

product
A multiplication gate is a gradient switcher

Gradient w.r.t. x,

←−x+ =←−z y

Gradient w.r.t. y

←−y + = x←−z

x

×

y

z

20

Summary

▶ Modern machine learning powered by automatic differentiation libraries
▶ Forward mode autodiff: matrix multiplication
▶ Reverse mode autodiff: input adjoint = output adjoint × partial derivative
▶ How to efficiently combine forward and reverse mode autodiff is still an open question
▶ Think of the pair of variable and its adjoint (x,←−x)

Backpropagation is just . . .
chain rule of differentiation with caching

21

References

Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and Siskind, J. M. (2018). Automatic differentiationin
machine learning: a survey. Journal of Machine Learning Research, 18:1–43.

Deisenroth, M. P., Faisal, A. A., and Ong, C. S. (2020). Mathematics for Machine Learning. Cambridge
University Press.

Griewank, A. and Walther, A. (2003). Introduction to automatic differentiation. Proceedings in Applied
Mathematics and Mechanics, 2(1):45–49.

Griewank, A. and Walther, A. (2008). Evaluating Derivatives, Principles and Techniques of Algorithmic
Differentiation, second edition. SIAM, Philadelphia.

Hoffmann, P. H. (2016). A hitchhikers guide to automatic differentiation. Numerical Algorithms,
72(3):775–811.

Pearlmutter, B. A. (1994). Fast exact multiplication by the hessian. Neural computation, 6(1):147–160.

22

References (cont.)

Schraudolph, N. N. (2002). Fast curvature matrix-vector products for second-order gradient descent. Neural
computation, 14(7):1723–1738.

Speelpenning, B. (1980). Compiling fast partial derivatives of functions given by algorithms.
Wengert, R. E. (1964). A simple automatic derivative evaluation program. Communications of the ACM,

7(8).
Werbos, P. J. (1975). Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences.

PhD thesis.

23

	References

