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Motivation

Key idea
Use automatic differentiation to derive the forward backward algorithm.

Related algorithms:
▶ dynamic programming
▶ message passing
▶ belief propagation
▶ inside outside

1



Hidden Markov model

Consider a hidden Markov model with 4 hidden nodes and 4 observed nodes.

z1 z2 z3 z4

x1 x2 x3 x4

Other names: Directed graphical model, Bayesian network
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Hidden Markov model

z1 z2 z3 z4

x1 x2 x3 x4

Probabilistic inference questions:
▶ Generate new observations x for hidden states z
▶ Estimate most likely hidden states z given observations x
▶ Compute marginal distribution p(z3)
▶ Learn the parameters, given observations x
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Compute posterior marginals

The forward–backward algorithm
calculates for all hidden state variables z1, . . . , z4 the distribution p(zt|x1, . . . , x4).
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Pointers to literature

▶ Hidden Markov model (Rabiner, 1989; Cappé et al., 2006)
▶ Dynamic programming, Bellman equations (Sutton and Barto, 1998; Bertsekas, 2018)
▶ Automatic differentiation applied to arithmetic circuits

(Darwiche, 2003; Brandherm and Jameson, 2004; Eisner, 2016)
▶ Message passing, belief propagation

https://tminka.github.io/papers/acmll2019/
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Recall: Automatic differentiation

Think of the chain rule of differentiation, but

Cache intermediate results
It turns out that we can reduce computational cost of computing the gradient if we cache
intermediate results.

Trade off computational complexity for space complexity.
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Automatic differentiation: + and×

We consider the special case of arithmetic circuits which only consists of multiplies
(products) and adds (sums).

Key idea
Observe that the gradient of multiply scales the value of the other input

By considering an equation of the form

e = ab ,

we observe that
∂e

∂a
= b and ∂e

∂b
= a .
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Multiply then add

a

b

c

d

×

×

e

f

+g

Read from right to left.
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Multiply then add

▶ Consider the gradient of g with respect to a and b

▶ By the chain rule,

∂g

∂a
=

∂g

∂e

∂e

∂a
and ∂g

∂b
=

∂g

∂e

∂e

∂b
.

▶ Substituting the partial differential for the product
(e = ab)

∂g

∂a
=

∂g

∂e
b and ∂g

∂b
= a

∂g

∂e
.

▶ The key variable is the middle variable e

a

b

c

d

×

×

e

f

+g
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Consider a pair (a,←−a )

Key idea
Think of partial differentiation with respect to an intemediate variable as an function

▶ Think of ∂
∂e as an operation on the variable g

∂

∂a
(g) =

∂

∂e
(g) · b and ∂

∂b
(g) = a · ∂

∂e
(g)

▶ automatic differentiation augments each variable (for example a) with an adjoint
variable ←−a to form an adjoint pair (a,←−a )

▶ The adjoint ←−a of a is the function that takes the partial differential ∂
∂a
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Dual numbers

Key idea
The adjoint ←−a of a is the partial differential function ∂

∂a .

Given e = ab ,

we obtain a pair of adjoint equations
←−a =←−e b and
←−
b = a←−e

▶ The gradient of multiply scales the value of the other input
▶ Generalizes to a product of n variables, generating n corresponding adjoint equations.
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Back to hidden Markov models

Key idea
Derive the backward pass by considering the trellis.
Obtain the forward pass by reverse mode automatic differentiation.

z1 z2 z3 z4

x1 x2 x3 x4

Focus on the recursive part of the flow of information from right to left, in particular from
node z3 to z2
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Backward algorithm

▶ Focus on the recursive part of the flow of information from node z3 to z2

▶ Assume that each hidden node zt has two possible states {A,B}
▶ Denote the message originating at z3, going left, as the vector β(z3)

β(z3) =

[
β(zA3 )
β(zB3 )

]
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Backward algorithm

▶ To compute the corresponding message β(z2) we have the following recursion

β(zA2 ) = g(zA2 → zA3 )β(z
A
3 ) + g(zA2 → zB3 )β(z

B
3 )

β(zB2 ) = g(zB2 → zA3 )β(z
A
3 ) + g(zB2 → zB3 )β(z

B
3 ) .

▶ This transition also includes the emission of the symbol x2.
▶ We have introduced the functions g(zA2 → zB3 ) to denote the transition from zA2 to zB3 .

14



Computational graph

g(zA2 → zA3 )

g(zA2 → zB3 )

β(zA3 )

β(zB3 )

g(zB2 → zA3 )

g(zB2 → zB3 )

×

×

×

×

p

q

r

s

+

+

β(zA2 )

β(zB2 )

a

b

c

d

×

×

e

f

+g
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Adjoint patterns

Key idea
Perform reverse mode automatic differentiation on multiply and add network

Eisner (2016)
16



Can use for more general functions

Intuition
Use chain rule to linearize function, and reverse mode autodiff to accumulate

forward pass by the chain rule

dz

dx
=

∂z

∂x
∂x+

∂z

∂y
∂y

reverse pass
←−x+ =←−z × ∂z

∂x

←−y + =←−z × ∂z

∂y

z = f(x, y)

x

f(·, ·)

y

z
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Summary

▶ Consider the special case of + and × computation
▶ Hidden Markov models are a special case of dynamic programming
▶ Given the backward algorithm, can derive the forward algorithm by reverse mode

automatic differentiation

Backpropagation is just...
simplified message passing in probabilistic graphical models
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