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Motivation

▶ In machine learning, we use gradients to train predictors
▶ For functions f(x) we can directly obtain its gradient ∇f(x)

▶ How to represent a constraint?

G(x, y) = 0

E.g. conservation of mass
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High school gradients

This is an equation

y = x3 + 2x2 + x+ 4

What is the gradient dy
dx?

dy

dx
= 3x2 + 4x+ 1

Observe that we can write the equation as

x3 + 2x2 + x+ 4− y = 0

which is of the form G(x, y) = 0.
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Optimization with constraints

Given a constrainted continuous optimization problem

minx,yF (x, y)

subject to G(x, y) = 0

We can solve the equality constraint to get

y = g(x)

and substitute into the objective F (x, g(x)), and calculate the gradient

d

dx
F (x, g(x))
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Advanced high school gradients

This is an equation

y = x3 + 2x2 + xy + 4

What is the gradient dy
dx?

Implicit function theorem
▶ Solve for y = g(x) and use quotient rule
▶ Directly differentiate, and use product rule
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Function of two variables

Consider a function
G(x, y) = 0

where x, y ∈ R.
Assume that near a particular point x0, we can write a closed form expression for y in terms
of x, that is

y = g(x) .
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Solve for one variable

Substituting y = g(x) into G(x, y), near x0, we get

G(x, g(x)) = 0 .

We calculate the derivative of G with respect to x using the chain rule,

Gx(x, g(x)) +Gy(x, g(x)) · g′(x) = 0 .

If Gy ̸= 0, then

g′(x) = −Gx

Gy
.
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Implicit function theorem

The implicit function theorem provides conditions under which we can write G(x, y) = 0
as y = g(x), and also conditions when g′(x) = −Gx

Gy
.

Hand wavy intuition
Given three variables (could be any topology) x, y, z and

G(x, y) = z ,

What are the conditions for the following to be well behaved?

g(x) = y

G(x, g(x)) = z .
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Implicit function theorem as ansatz

Ansatz
1. Explicitly solve one variable in terms of another
2. Chain the gradients

▶ Ansatz = a way to look at problems
▶ The implicit function theorem is a way to solve equations

Generalizations depending on where equations live (Krantz and Parks, 2013):
▶ Inverse function theorem
▶ Constant rank theorem
▶ Banach fixed point theorem
▶ Nash-Moser theorem
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Pointers to literature

▶ From linear algebra to calculus (Hubbard and Hubbard, 2015; Spivak, 2008)
▶ Implicit function theorem from variational analysis (Dontchev and Rockafellar, 2014)
▶ Many versions of implicit function theorem (Krantz and Parks, 2013)
▶ Deep Declarative Networks

https://anucvml.github.io/ddn-cvprw2020/

Augustin-Louis Cauchy, 1916
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Gradient of loss w.r.t. optimal value

▶ Consider the problem of structured prediction (Nowozin et al., 2014)
▶ Let a sample be (xn,yn)

▶ Energy given the parameter of the learner w is E(yn,xn,w)

▶ We assume that the best predictor is found by an optimization algorithm over y,

y∗(xn,w) = optyE(y,xn,w) .

▶ Measure the error with ℓ(y,yn)

▶ Loss per sample L(xn,yn,w) (assume predict with y∗)
▶ Want to take the gradient of loss L w.r.t. paramters w

▶ but have an optimization problem inside (to find y∗)
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Gradient of L w.r.t. w

By implicit differentation (Do et al., 2007; Samuel and Tappen, 2009), the gradient of the
loss L(xn,yn,w) with respect to the parameters dL

dw has a closed form.

Theorem
Let y∗(w) = argminy E(y,w), and L(w) = ℓ(y∗(w)). Then

dL

dw
= − ∂2E

∂w∂y⊤

(
∂2E

∂y∂y⊤

)−1
dℓ

dy
.
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Sketch: chain rule

L(w) = ℓ
(
optyE(y,w)

)
By the chain rule,

∂L

∂w
=

∂ℓ

∂y

∂y

∂w
.
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Sketch: gradient with respect to energy E

Denote by
g(y,w) =

∂E(y,w)

∂y

The gradient of g with respect to w is given by the chain rule again. Note that y is actually
a function of w, i.e. g(y(w),w).

∂

∂w
g(y(w),w) =

∂g

∂y

∂y

∂w
+

∂g

∂w
.
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Sketch: Stationarity conditions

At optimality of E(y,w), its gradient is zero, i.e. g(y,w) = 0. Solving

∂y

∂w
= − ∂g

∂w

(
∂g

∂y

)−1

Substituting ∂y
∂w into ∂L

∂w ,
∂L

∂w
= − ∂g

∂w

(
∂g

∂y

)−1 ∂ℓ

∂y
.
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Sketch: Substitute back to obtain ∂L
∂w

Recall the definition of g as gradient of energy E,

g(y,w) =
∂E(y,w)

∂y

And hence we get the Hessian with respect to the energy

∂L

∂w
= − ∂2E

∂w∂y⊤

(
∂2E

∂y∂y⊤

)−1
dℓ

dy
.
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Result: Gradient of L w.r.t. w

The gradient of L(w) = ℓ(argminy E(y(w),w)) with respect to w has a closed form.

Theorem
Let y∗(w) = argminy E(y,w), and L(w) = ℓ(y∗(w)). Then

dL

dw
= − ∂2E

∂w∂y⊤

(
∂2E

∂y∂y⊤

)−1
dℓ

dy
.

Domke (2012)
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Summary

▶ We want to take the gradient with respect to an equality constraint
▶ Implicit function theorem gives conditions where we can "invert" a derivative
▶ Implicit function theorem as a way to solve equations
▶ Useful to take a gradient over an optimum

Backpropagation is just...
the implicit function theorem
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