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Motivation

Automatic differentiation
Augment each variable (for example a) with an adjoint variable ←−a
to form an adjoint pair (a,←−a ).

Adjoint, I’ve heard that somewhere else...
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Linear dynamical system

Consider a dynamical system with state variable xt and input variable ut. Assume that
state evolves according to linear dynamics

xt+1 = Axt +But for t = 0, 1, . . .

where (A,B) are known state evolution matrices.
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Find good control inputs

Find a sequence of inputs ut that minimizes some quadratic cost over the trajectory, for a
given x0:

minut,xt

1

2
x⊤NSxN+1 +

1

2

N∑
t=0

x⊤t Qxt + u⊤t Rut,

subject to xt+1 = Axt +But, for t = 0, 1, . . . , N.
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Lagrangian

The Lagrangian has the form (with Lagrange multiplier λ)

L(x,u,λ) =
1

2
x⊤NSxN+1 +

1

2

N∑
t=0

x⊤t Qxt + u⊤t Rut − λ⊤t (xt+1 −Axt +But).

To satisfy ∇xtL = 0 we solve for the update equation for λ,

λt−1 = A⊤λt +Qxt.

This is called the adjoint dynamics (with initial condition λN = SxN+1).

Caching. In reverse.
We build λt−1 by multiplying λt with A

4



What is in a name?

In dynamical systems, the Lagrange multipliers are called costates or adjoint variables and
the dual optimization problem is called the adjoint problem.

“Adjoint functors arise everywhere”,
– Saunders Mac Lane, 1998, Categories for the Working Mathematician.
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Pointers to literature

▶ Carathéodory’s royal road (Pesch, 2012)
▶ Pontryagin’s maximum principle (Pontryagin et al., 1964; Ohsawa, 2015)
▶ Book on optimal control (Anderson and Moore, 2007)
▶ Neural network view (Chen et al., 2018; Finlay et al., 2020)
▶ ICERM workshop on Scientific Machine Learning

https://icerm.brown.edu/events/ht19-1-sml/

Sculpture at Groningen,
via Pesch & Plail 6
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Find good control inputs

Find a sequence of inputs ut that minimizes some quadratic cost
over the trajectory, for a given x0:

minut,xt

1

2
x⊤NSxN+1 +

1

2

N∑
t=0

x⊤t Qxt + u⊤t Rut,

subject to xt+1 = Axt +But, for t = 0, 1, . . . , N.

We consider the more general function

x∗ = argminxF (u, x) = argminxF (g(x), x)

subject to G(u, x) = 0 subject to G(u, x) = 0 .
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Recall: Jacobian

Definition (Jacobian)
The collection of all first-order partial derivatives of a vector-valued function
f : Rn → Rm

is called the Jacobian.

J = ∇xf =
df(x)

dx
=

[
∂f(x)

∂x1
· · · ∂f(x)

∂xn

]

=


∂f1(x)

∂x1
· · · ∂f1(x)

∂xn...
...

∂fm(x)

∂x1
· · · ∂fm(x)

∂xn

 ∈ Rm×n

x =

x1...
xn


J(i, j) =

∂fi
∂xj

.
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Recall: Automatic differentiation

Backward pass of reverse mode automatic differentiation
Given a function G(w) := g(f(e(w))), with intermediate variables x, y and final output z.

w e(·) x f(·) y g(·) z

Input adjoint = output adjoint × forward partials

dz

dw︸︷︷︸
←−w

=

(
dz

dy

dy

dx

)
︸ ︷︷ ︸

←−x

dx

dw
(reverse mode)
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Vectorized computation

Efficient compute
Exploit computational architecture using the Vector Jacobian Product.

Assume that function e : Rn → Rm

Input adjoint = output adjoint× forward partials
←−w = ←−x× ∂x

∂w
R1×n R1×m Rm×n
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Constrained optimization

Consider the general optimization problem with two (potentially vector) variables:

x∗ = argminxF (g(x), x)

subject to G(u, x) = 0 .

Think about how the information flows

x g(·) u F (·, ·) f
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Recall: Implicit function theorem

The implicit function theorem provides conditions under which we can write G(x, y) = 0
as y = g(x), and also conditions when g′(x) = −Gx

Gy
.

Hand wavy intuition
Given three variables (could be any topology) x, y, z and

G(x, y) = z ,

What are the conditions for the following to be well behaved?

g(x) = y

G(x, g(x)) = z .
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Solve for gradient of constraint

Differentiate G with respect to x, using the chain rule,

dG

dx
=

∂G

∂u

∂u

∂x
+

∂G

∂x

∂x

∂x
.

Solve for stationarity conditions, setting dG
dx = 0,

∂u

∂x
= −

(
∂G

∂u

)−1 ∂G
∂x

.
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Chain rule on objective function F

Differentiate F with respect to x, using the chain rule,

dF

dx
=

∂F

∂x

∂x

∂x
+

∂F

∂u

∂u

∂x
.

Substituting the solution of ∂u
∂x into dF

dx , we obtain

dF

dx
=

∂F

∂x
− ∂F

∂u

(
∂G

∂u

)−1
︸ ︷︷ ︸

=−λ⊤

∂G

∂x
.

Observe that λ can be computed by a vector Jacobian product.
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Identify Lagrange multiplier λ

Rewrite in terms of λ.
dF

dx
=

∂F

∂x
+ λ⊤

∂G

∂x
where λ =

∂F

∂u

(
∂G

∂u

)−1

x g(·) u F (·, ·) f

λ⊤ ∂G
∂x

λ︸︷︷︸
result of VJP

∂F

∂u︸︷︷︸
output adjoint 15



Adjoint = Lagrange multiplier in method of adjoints

We consider the general function

x∗ = argminxF (u, x) = argminxF (g(x), x)

subject to G(u, x) = 0 subject to G(u, x) = 0 .

From the implicit function theorem

dF

dx
=

∂F

∂x
+ λ⊤

∂G

∂x
where λ =

∂F

∂u

(
∂G

∂u

)−1
Alternatively, by the method of Lagrange

∇xL = ∇xF (x, u) + λ⊤∇xG(x, u)

adjoint dynamics (λt−1 = A⊤λt +Qxt).
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Summary

▶ Method of adjoints studied in optimal control
▶ ... adjoint state method, Pontryagin’s principle
▶ Vector Jacobian products for efficient computation
▶ Adjoint variable in autodiff = Lagrange multiplier

Backpropagation is just ...
the method of adjoints
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