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Motivation

▶ In machine learning, we use gradients to train predictors
▶ For functions f(x) we can directly obtain its gradient ∇f(x)

▶ We may wish to calculate a gradient for functions with constraints
▶ Assume that we can calculate gradient for corresponding unconstrained problem

Key idea
How to take a gradient with respect to a constrained optimization problem.
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History

▶ Joseph-Louis Lagrange (b. 1736) worked on calculus of variations and founded the idea
▶ Nonlinear programming was coined by Harold W. Kuhn and Albert W. Tucker in 1951.
▶ Turns out William Karush already wrote about similar conditions in his master’s thesis

in 1939, and was reintroduced into the literature by Akira Takayama in 1974.
▶ Classic backpropagation paper, by Yann LeCun in 1988, observed the relation between

backpropagation and Lagrange multipliers.
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Constrained optimization

Primal optimization problem
Given f : RD → R and gi : RD → R for i = 1, . . . ,m,

minx f(x)

subject to gi(x) ⩽ 0 for all i = 1, . . . ,m
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Lagrange multipliers as relaxation

We can convert the primal optimization problem to an unconstrained problem.

J(x) = f(x) +

m∑
i=1

1(gi(x)) ,

where 1(z) is an infinite step function

1(z) =
{
0 if z ⩽ 0

∞ otherwise
.

Key idea
Approximate indicator function by linear function.
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Lagrangian

We associate the primal optimization problem with a Lagrangian, by introducing Lagrange
multipliers λi for each constraint gi.

Lagrangian

L(x,λ) = f(x) +

m∑
i=1

λigi(x)

= f(x) + λ⊤g(x)
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Why Lagrangian?

▶ minx∈Rd L(x,λ) is an unconstrained optimization problem for a given value of λ
▶ Turns out: If solving minx∈Rd L(x,λ) is easy, then the overall problem is easy
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Dual optimization problem

Key idea
Convert problem in x ∈ RD, to another problem in λ ∈ Rm.

▶ Primal and dual problems are related
▶ The objective values at optimality related via gradients
▶ the dual problem (maximization over λ) is a maximum over a set of affine functions,

and hence is a concave function, even though f(·) and gi(·) may be non-convex
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Primal dual pair

The problem

minx f(x)

subject to gi(x) ⩽ 0 for all i = 1, . . . ,m

is known as the primal problem, corresponding to the primal variables x. The associated
Lagrangian dual problem is given by

maxλ∈Rm D(λ)

subject to λ ⩾ 0 ,

where λ are the dual variables and D(λ) = minx∈Rd L(x,λ).
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Minimax inequality

Why Lagrangian duality is useful? Because primal values are greater than dual values.

Key idea
For any function with two arguments, the maximin is less than the minimax.

maxy minx φ(x,y) ⩽ minx maxy φ(x,y) .
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Weak duality

Key idea
Primal values f(x) are always greater than (or equal to) dual values D(λ)

We can see this by applying the minimax inequality

minx∈Rd maxλ⩾0 L(x,λ)︸ ︷︷ ︸
f(x)

⩾ maxλ⩾0 minx∈Rd L(x,λ)︸ ︷︷ ︸
D(λ)

.
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Motivating the Karush Kuhn Tucker conditions

Lagrangian
L(x,λ) = f(x) +

m∑
i=1

λigi(x)

Stationarity
Solve for optimal value by taking gradient w.r.t. x and set to zero

Lagrange multipliers are orthogonal to constraints
▶ Recall that we have one Lagrange multiplier per constraint
▶ If λi = 0, then gi(x) can be any value (has slack)
▶ If gi(x) = 0 (active), then λi has slack

Retain feasibility

11



Karush Kuhn Tucker conditions

stationarity
0 ∈ ∇f(x) +

m∑
i=1

λi∇gi(x) . (1)

complementary slackness
λigi(x) = 0 for all i = 1, . . . ,m . (2)

primal feasibility
gi(x) ⩽ 0 for all i = 1, . . . ,m . (3)

dual feasibility
λi ⩾ 0 for all i = 1, . . . ,m . (4)
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Constrained optimization

Key idea
Objective gradient is a conic combination of active constraint gradients

By stationarity condition

∇f(x) = −
m∑
i=1

λi∇gi(x)

for a given value of λ.
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KKT implies strong duality

Key idea
KKT conditions are sufficient for zero duality gap

Proof sketch:
▶ By weak duality, f(x) ⩾ D(λ). Let x∗ and λ∗ denote optimal values
▶ By stationarity conditions

D(λ∗) = f(x∗) +

m∑
i=1

λ∗
i gi(x

∗) ,

▶ By complementary slackness

f(x∗) +

m∑
i=1

λ∗
i gi(x

∗) = f(x∗) .

▶ Hence duality gap is zero
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KKT implies strong duality

Key idea
Challenge is to express geometric constraints as algebraic equations

Constraint qualification additionally needed for KKT to necessarily imply zero duality gap.
▶ Mangasarian Fromovitz
▶ Linear independence
▶ Fritz John
▶ Slater’s condition
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Summary

Key idea
How to take a gradient with respect to a constrained optimization problem.

▶ Objective gradient is a conic combination of active constraint gradients

∇f(x) = −
m∑
i=1

λi∇gi(x)

▶ Check that one of Lagrange multipliers or primal constraints is zero
▶ The KKT conditions are sufficient for a zero duality gap
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