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Setting

▶ Expected utility
Ex∼p(x;θ)[U(x)] =

∫
U(x)p(x;θ)dx

▶ Distributional parameters θ

▶ Gradients w.r.t. distributional parameters θ of an expected utility:

∇θEx∼p(x;θ)[U(x)]

▶ Sensitivity analysis Explanation
▶ Training of machine learning models Optimization
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Where?

▶ Variational inference. Gradient of evidence lower bound (ELBO) w.r.t.
variational parameters θ:

∇θEz∼q(z|x;θ)

[
log p(x|z)− log q(z|x;θ)

p(z)

]

▶ Reinforcement learning. Gradient of expected long-term reward w.r.t. policy
parameters θ:

∇θEτ∼p(τ ;θ)

[
T∑
t=0

γtr(xt,ut)

]
, trajectory τ = (x0,u0, . . . ,xT ,uT )

▶ Experimental design and Bayesian optimization. Gradient of the probability
of improvement w.r.t. designs θ (where to measure next?):

∇θEy∼p(y;θ)[1{y>ybest}]
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Gradients of expectations

∇θEx∼p(x;θ)[U(x)]

▶ If we can compute (an approximation of) the expected value analytically (requires
deterministic approximate inference), we can use the chain rule to get the
gradient

▶ Otherwise (e.g., stochastic approximate inference, mini-batching, Monte-Carlo
estimation), we need to compute gradients of a stochastic estimator
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Stochastic gradient estimators

∇θEx∼p(x;θ)[U(x)] = ∇θ

∫
U(x)p(x;θ)dx

▶ Derivatives of measures: Directly differentiate the measure p(x;θ) w.r.t. θ
▶ Score-function gradient estimators
▶ Measure-valued gradient estimators

▶ Derivatives of paths: Differentiate through path the parameters θ take (via
random variables x to U)
▶ Pathwise gradient estimators

▶ Repeating pattern: Swap the order of differentiation and expectation
Gradients of deterministic quantities ✓
Monte-Carlo integration to compute the expectation ✓
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Score-Function Gradient Estimators



Key insight

Key idea
Use log-derivative trick to turn the gradient of an expectation into an expectation of
a gradient.

▶ Log-derivative trick

∇θ log p(x;θ)
score

=
∇θp(x;θ)

p(x;θ)
∇θp(x;θ) = p(x;θ)∇θ log p(x;θ)
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Score-function gradient estimator: Derivation

Expectation as
integration

Move gradient inside

Log-derivative trick

Integral as expectation

∇θEx∼p(x;θ)[U(x)] = ∇θ

∫
U(x)p(x;θ)dx

= Ex∼p(x;θ)[U(x)∇θ log p(x;θ)]
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Score-function gradient estimator

∇θEx∼p(x;θ)[U(x)] = Ex∼p(x;θ)[U(x)∇θ log p(x;θ)
score

]

▶ Turned gradient of an expectation into the expectation of a (deterministic)
gradient

▶ Gradient is the expected utility-weighted score

▶ Monte-Carlo integration to get the gradient:

∇θEx∼p(x;θ)[U(x)] ≈ 1

S

S∑
s=1

U(x(s))∇θ log p(x(s);θ), x(s) ∼ p(x;θ)
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Properties: Score-function gradient estimator

∇θEx∼p(x;θ)[U(x)] ≈ 1

S

S∑
s=1

U(x(s))∇θ log p(x(s);θ), x(s) ∼ p(x;θ)

▶ Single-sample estimation is OK, i.e., S = 1

▶ Any type of utility function U can be used (e.g., non-differentiable)
▶ p must be differentiable w.r.t. θ

▶ Must be able to sample easily from p(x;θ)

▶ Discrete and continuous distributions are OK
▶ Techniques to control the variance of the estimator

(e.g., Greensmith et al., 2004; Titsias & Lázaro-Gredilla, 2015)
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Example: REINFORCE (Williams, 1992)

▶ Optimize parameters θ of a (stochastic) policy p(ut|xt;θ)

∇θEτ∼p(τ ;θ)[U(τ )]

▶ U(τ ): Long-term reward for trajectory τ

▶ Trajectory distribution (with xt+1 = f(xt,ut, ϵt))

p(τ ;θ) = p(x0,u0, . . . ,uT ,xT ;θ) = p(x0)
T∏
t=0

p(xt+1|xt,ut)

state transition

p(ut|xt;θ)

policy
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Example: REINFORCE (2) (Williams, 1992)

∇θEτ∼p(τ ;θ)[U(τ )] = Eτ∼p(τ ;θ)[U(τ )∇θlog p(τ ;θ)]

= Eτ∼p(τ ;θ)

U(τ )∇θ

log p(x0) +
T∑
t=0

log p(xt+1|xt,ut)

state transition

+ log p(ut|xt;θ)

policy


= Eτ∼p(τ ;θ)

[
U(τ )

T∑
t=0

∇θ log p(ut|xt;θ)

]
▶ Markov property of state evolution

Only need gradient of the log-policy at each time step
▶ Monte Carlo for expectation
▶ Can be used in model-free and model-based settings
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Applications

▶ Reinforcement learning (e.g., Williams, 1992; Sutton et al., 2000)
▶ (Black-box) variational inference (e.g., Paisley et al., 2012, Ranganath et al.,

2014)
▶ Discrete-event systems (operations research)
▶ Computational finance

12



Pathwise Gradient Estimators



Setting

∇θEx∼p(x;θ)[U(x)]

z x
fθ U

x = f(z;θ)

▶ Data x can be obtained by a deterministic transformation f (path) of a latent
variable z ∼ p(z), where p(z) has no tunable parameters, e.g., p(z) = N

(
0, I

)
▶ Distributional parameters of p(x;θ) are the parameters of the path f
▶ Push gradients through this path (chain rule)

Key idea
Define a path from a latent variable z to data x and use the change-of-variables trick
to turn the gradient of an expectation into an expectation of a gradient.
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Derivation

z x
fθ U

x = f(z;θ)

Expectation as
integration

Change of variables

Move gradient inside

Integral as expectation

∇θEx∼p(x;θ)[U(x)] = ∇θ

∫
U(x)p(x;θ)dx
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Pathwise gradient estimator

z x
fθ U

x = f(z;θ)

∇θEx∼p(x;θ)[U(x)] = Ez ∼ p(z)[∇θU(f(z;θ))]

▶ Turned gradient of an expectation into an expectation (w.r.t. a
parameter-free distribution) of a (deterministic) gradient

Push parameters inside U

▶ Monte-Carlo estimator of the gradient

∇θEx∼p(x;θ)[U(x)] ≈ 1

S

S∑
s=1

∇θU(f(z(s);θ)), z(s) ∼ p(z)

∇θU(f(z;θ)) = ∇xU(x)∇θf(z;θ) Chain rule
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Properties: Pathwise gradient estimator

∇θEx∼p(x;θ)[U(x)] ≈ 1

S

S∑
s=1

∇xU(x(s))∇θf(z
(s);θ), z(s) ∼ p(z)

▶ Single-sample estimation OK, i.e., S = 1.
▶ Utility U must be differentiable
▶ Path f must be differentiable
▶ Need to be able to sample from p(z), but not from p(x;θ)

▶ Often lower variance than score-function gradient estimator
▶ Control variability of path f to control variance of the estimator
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Example: Bayesian optimization (Wilson et al., 2018)

▶ Inner loop of Bayesian optimization: Where to measure next?
Maximize acquisition function

▶ Many acquisition functions can be written as expected utilities

L = Ey∼p(y;θ)[U(y)] =

∫
U(y)p(y;θ)dy, p(y;θ) = N

(
µ, Σ

)

▶ Define path from z ∼ N (0, I) to y Pathwise gradient estimation
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Example: Bayesian optimization (Wilson et al., 2018)

From Wilson et al. (2018)
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Application areas

▶ Bayesian optimization (e.g., Wilson et al., 2018)
▶ Normalizing flows (e.g., Rezende & Mohamed, 2015)
▶ Variational auto-encoders (e.g., Kingma & Welling, 2014; Rezende et al., 2014)
▶ Generative models (e.g., Goodfellow et al., 2014; Mohamed &

Lakshminarayanan, 2016)
▶ Reinforcement learning (e.g., Heess et al., 2015)
▶ Probabilistic programming (e.g., Ritchie et al., 2016)

19



Summary

∇θEx∼p(x;θ)[U(x)]

▶ Compute gradient of an expected utility
▶ Key idea: Swap order of differentiation and integration (expectation)

Use Monte Carlo methods to compute gradients
▶ Score-function gradient estimator using log-derivative trick
▶ Pathwise gradient estimator defines a parametrized path from a latent variable to

the data

20
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