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Setting

▶ Expected utility
Ex∼p(x;θ)[U(x)] =

∫
U(x)p(x;θ)dx

▶ Distributional parameters θ

▶ Gradients w.r.t. distributional parameters θ of an expected utility:

∇θEx∼p(x;θ)[U(x)]

▶ Sensitivity analysis Explanation
▶ Training of machine learning models Optimization
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Where?

▶ Variational inference. Gradient of evidence lower bound (ELBO) w.r.t.
variational parameters θ:

∇θEz∼q(z|x;θ)

[
log p(x|z)− log q(z|x;θ)

p(z)

]

▶ Reinforcement learning. Gradient of expected long-term reward w.r.t. policy
parameters θ:

∇θEτ∼p(τ ;θ)

[
T∑
t=0

γtr(xt,ut)

]
, trajectory τ = (x0,u0, . . . ,xT ,uT )

▶ Experimental design and Bayesian optimization. Gradient of the probability
of improvement w.r.t. designs θ (where to measure next?):

∇θEy∼p(y;θ)[1{y>ybest}]
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Gradients of expectations

∇θEx∼p(x;θ)[U(x)]

▶ If we can compute (an approximation of) the expected value analytically (requires
deterministic approximate inference), we can use the chain rule to get the
gradient

▶ Otherwise (e.g., stochastic approximate inference, mini-batching, Monte-Carlo
estimation), we need to compute gradients of a stochastic estimator
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Stochastic gradient estimators

∇θEx∼p(x;θ)[U(x)] = ∇θ

∫
U(x)p(x;θ)dx

▶ Derivatives of measures: Directly differentiate the measure p(x;θ) w.r.t. θ
▶ Score-function gradient estimators
▶ Measure-valued gradient estimators

▶ Derivatives of paths: Differentiate through path the parameters θ take (via
random variables x to U)
▶ Pathwise gradient estimators

▶ Repeating pattern: Swap the order of differentiation and expectation
Gradients of deterministic quantities ✓
Monte-Carlo integration to compute the expectation ✓
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Score-Function Gradient Estimators



Key insight

Key idea
Use log-derivative trick to turn the gradient of an expectation into an expectation of
a gradient.

▶ Log-derivative trick

∇θ log p(x;θ)
score

=
∇θp(x;θ)

p(x;θ)
∇θp(x;θ) = p(x;θ)∇θ log p(x;θ)

6



Key insight

Key idea
Use log-derivative trick to turn the gradient of an expectation into an expectation of
a gradient.

▶ Log-derivative trick

∇θ log p(x;θ)
score

=
∇θp(x;θ)

p(x;θ)
∇θp(x;θ) = p(x;θ)∇θ log p(x;θ)

6



Key insight

Key idea
Use log-derivative trick to turn the gradient of an expectation into an expectation of
a gradient.

▶ Log-derivative trick

∇θ log p(x;θ)
score

=
∇θp(x;θ)

p(x;θ)
∇θp(x;θ) = p(x;θ)∇θ log p(x;θ)

6



Score-function gradient estimator: Derivation

Expectation as
integration

Move gradient inside

Log-derivative trick

Integral as expectation

∇θEx∼p(x;θ)[U(x)] = ∇θ

∫
U(x)p(x;θ)dx

= Ex∼p(x;θ)[U(x)∇θ log p(x;θ)]
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Score-function gradient estimator

∇θEx∼p(x;θ)[U(x)] = Ex∼p(x;θ)[U(x)∇θ log p(x;θ)
score

]

▶ Turned gradient of an expectation into the expectation of a (deterministic)
gradient

▶ Gradient is the expected utility-weighted score

▶ Monte-Carlo integration to get the gradient:

∇θEx∼p(x;θ)[U(x)] ≈ 1

S

S∑
s=1

U(x(s))∇θ log p(x(s);θ), x(s) ∼ p(x;θ)
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Properties: Score-function gradient estimator

∇θEx∼p(x;θ)[U(x)] ≈ 1

S

S∑
s=1

U(x(s))∇θ log p(x(s);θ), x(s) ∼ p(x;θ)

▶ Single-sample estimation is OK, i.e., S = 1

▶ Any type of utility function U can be used (e.g., non-differentiable)
▶ p must be differentiable w.r.t. θ

▶ Must be able to sample easily from p(x;θ)

▶ Discrete and continuous distributions are OK
▶ Techniques to control the variance of the estimator

(e.g., Greensmith et al., 2004; Titsias & Lázaro-Gredilla, 2015)
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Example: REINFORCE (Williams, 1992)

▶ Optimize parameters θ of a (stochastic) policy p(ut|xt;θ)

∇θEτ∼p(τ ;θ)[U(τ )]

▶ U(τ ): Long-term reward for trajectory τ

▶ Trajectory distribution (with xt+1 = f(xt,ut, ϵt))

p(τ ;θ) = p(x0,u0, . . . ,uT ,xT ;θ) = p(x0)
T∏
t=0

p(xt+1|xt,ut)

state transition

p(ut|xt;θ)

policy
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Example: REINFORCE (2) (Williams, 1992)

∇θEτ∼p(τ ;θ)[U(τ )] = Eτ∼p(τ ;θ)[U(τ )∇θlog p(τ ;θ)]

= Eτ∼p(τ ;θ)

U(τ )∇θ

log p(x0) +
T∑
t=0

log p(xt+1|xt,ut)

state transition

+ log p(ut|xt;θ)

policy


= Eτ∼p(τ ;θ)

[
U(τ )

T∑
t=0

∇θ log p(ut|xt;θ)

]
▶ Markov property of state evolution

Only need gradient of the log-policy at each time step
▶ Monte Carlo for expectation
▶ Can be used in model-free and model-based settings
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Applications

▶ Reinforcement learning (e.g., Williams, 1992; Sutton et al., 2000)
▶ (Black-box) variational inference (e.g., Paisley et al., 2012, Ranganath et al.,

2014)
▶ Discrete-event systems (operations research)
▶ Computational finance

12



Pathwise Gradient Estimators



Setting

∇θEx∼p(x;θ)[U(x)]

z x
fθ U

x = f(z;θ)

▶ Data x can be obtained by a deterministic transformation f (path) of a latent
variable z ∼ p(z), where p(z) has no tunable parameters, e.g., p(z) = N

(
0, I

)
▶ Distributional parameters of p(x;θ) are the parameters of the path f
▶ Push gradients through this path (chain rule)

Key idea
Define a path from a latent variable z to data x and use the change-of-variables trick
to turn the gradient of an expectation into an expectation of a gradient.
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Derivation

z x
fθ U

x = f(z;θ)

Expectation as
integration

Change of variables

Move gradient inside

Integral as expectation

∇θEx∼p(x;θ)[U(x)] = ∇θ

∫
U(x)p(x;θ)dx
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Pathwise gradient estimator

z x
fθ U

x = f(z;θ)

∇θEx∼p(x;θ)[U(x)] = Ez ∼ p(z)[∇θU(f(z;θ))]

▶ Turned gradient of an expectation into an expectation (w.r.t. a
parameter-free distribution) of a (deterministic) gradient

Push parameters inside U

▶ Monte-Carlo estimator of the gradient

∇θEx∼p(x;θ)[U(x)] ≈ 1

S

S∑
s=1

∇θU(f(z(s);θ)), z(s) ∼ p(z)

∇θU(f(z;θ)) = ∇xU(x)∇θf(z;θ) Chain rule
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Properties: Pathwise gradient estimator

∇θEx∼p(x;θ)[U(x)] ≈ 1

S

S∑
s=1

∇xU(x(s))∇θf(z
(s);θ), z(s) ∼ p(z)

▶ Single-sample estimation OK, i.e., S = 1.
▶ Utility U must be differentiable
▶ Path f must be differentiable
▶ Need to be able to sample from p(z), but not from p(x;θ)

▶ Often lower variance than score-function gradient estimator
▶ Control variability of path f to control variance of the estimator
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Example: Bayesian optimization (Wilson et al., 2018)

▶ Inner loop of Bayesian optimization: Where to measure next?
Maximize acquisition function

▶ Many acquisition functions can be written as expected utilities

L = Ey∼p(y;θ)[U(y)] =

∫
U(y)p(y;θ)dy, p(y;θ) = N

(
µ, Σ

)

▶ Define path from z ∼ N (0, I) to y Pathwise gradient estimation
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Example: Bayesian optimization (Wilson et al., 2018)

From Wilson et al. (2018)
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Application areas

▶ Bayesian optimization (e.g., Wilson et al., 2018)
▶ Normalizing flows (e.g., Rezende & Mohamed, 2015)
▶ Variational auto-encoders (e.g., Kingma & Welling, 2014; Rezende et al., 2014)
▶ Generative models (e.g., Goodfellow et al., 2014; Mohamed &

Lakshminarayanan, 2016)
▶ Reinforcement learning (e.g., Heess et al., 2015)
▶ Probabilistic programming (e.g., Ritchie et al., 2016)

19



Summary

∇θEx∼p(x;θ)[U(x)]

▶ Compute gradient of an expected utility
▶ Key idea: Swap order of differentiation and integration (expectation)

Use Monte Carlo methods to compute gradients
▶ Score-function gradient estimator using log-derivative trick
▶ Pathwise gradient estimator defines a parametrized path from a latent variable to

the data

20



T
h
e
r
e
 and Back Again: A Tale of

 
E
x

p
e
c
t
a
t
io

n
s
 
a
n
d
 
S
l

opes. A Neurips 2020 Tut o
r
ia

l
 
b
y
 
M
a
r
c
 
D
e
is

e
n
r
o

th and

Bay
Backprop

Heights
MonteCarlo

Lagrange
Lake 

D
if

fe
re

nt
ia

ti
on N

ormalizing F
low

Expectation

Slopes of

integration

numerical 

Swamps of 

V
ale of Im

plicit  

Forw
ard-backw

ard Beach

Passage
Adjoint

U
nr

ol
li
ng

 H
ill

s  O
f T

im
e

b

A

C

D

E

f

i

h G

J

21



References

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and
Bengio, Y. (2014). Generative Adversarial Networks. In Advances in Neural Information Processing
Systems.

Greensmith, E., Bartlett, P. L., and Baxter, J. (2004). Variance Reduction Techniques for Gradient
Estimates inReinforcement Learning. Journal of Machine Learning Research, 5:1471–1530.

Heess, N., Wayne, G., andTimothy Lillicrap, D. S., Tassa, Y., and Erez, T. (2015). Learning Continuous
Control Policies by Stochastic Value Gradients. In Advances in Neural Information Processing Systems.

Kingma, D. P. and Welling, M. (2014). Auto-Encoding Variational Bayes. In Proceedings of the
International Conference on Learning Representations.

Mohamed, S. and Lakshminarayanan, B. (2016). Learning in Implicit Generative Models. arXiv:1610.03483.
Paisley, J., Blei, D. M., and Jordan, M. I. (2012). Variational Bayesian Inference with Stochastic Search. In

Proceedings of the International Conference on Machine Learning.
Ranganath, R., Gerrish, S., and Blei, D. M. (2014). Black Box Variational Inference. arXiv:1401.0118.

22



References (cont.)

Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic Backpropagation and Variational
Inference in Deep Latent Gaussian Models. In Proceedings of the International Conference on Machine
Learning.

Ritchie, D., Horsfall, P., and Goodman, N. D. (2016). Deep Amortized Inference for Probabilistic Programs.
arXiv:1610.05735.

Sutton, R. S., Mcallester, D. A., Singh, S. P., and Mansour, Y. (2000). Policy Gradient Methods for
Reinforcement Learning with Function Approximation. In Advances in Neural Information Processing
Systems.

Titsias, M. K. and Lázaro-Gredilla, M. (2015). Local Expectation Gradients for Black Box Variational
Inference. In Advances in Neural Information Processing Systems.

Williams, R. J. (1992). Simple Statistical Gradient-following Algorithms for Connectionist Reinforcement
Learning. Machine Learning, 8(3):229–256.

Wilson, J. T., Hutter, F., and Deisenroth, M. P. (2018). Maximizing Acquisition Functions for Bayesian
Optimization. In Advances in Neural Information Processing Systems.

23


	Score-Function Gradient Estimators
	Pathwise Gradient Estimators
	References

